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We investigate the role of hidden terms at switching surfaces in piecewise smooth vector

fields. Hidden terms are zero everywhere except at the switching surfaces, but appear when

blowing up the switching surface into a switching layer. When discontinuous systems do

surprising things, we can often make sense of them by extending our intuition for smooth

system to the switching layer. We illustrate the principle here with a few attractors that are

hidden inside the switching layer, being evident in the flow, despite not being directly evident

in the vector field outside the switching surface. These can occur either at a single switch

(where we will introduce hidden terms somewhat artificially to demonstrate the principle),

or at the intersection of multiple switches (where hidden terms arise inescapably). A more

subtle role of hidden terms is in bifurcations, and we revisit some simple cases from previous

literature here, showing that they exhibit degeneracies inside the switching layer, and that

the degeneracies can be broken using hidden terms. We illustrate the principle in systems

with one or two switches.

I. INTRODUCTION

If a smoothly evolving system is interrupted by sudden jumps at a definite threshold, we may

model it with a vector field that is smooth except at some switching surface. The seminal theory of

such piecewise smooth vector fields was set out by Filippov [5], and began the systematic extension

of standard smooth dynamical systems theory to admit isolated discontinuities (the relation to

Krasovskij, Hermes, Gelig-Leonov-Yakubovich, and Aizerman-Pyatnitskiy definitions can be found

in [9, 15]). Filippov showed how to solve a vector field across a discontinuity, giving, in most

situations of interest, a well defined and deterministic flow. Utkin applied this to introduce sliding

modes for electronic switching (or variable structure control) [3, 28, 29], and alongside growing

uses in contact mechanics and the life sciences [2, 16, 23, 30], dynamical systems theory has been

extended vastly to categorize the attractors and bifurcations induced by discontinuity [1, 5, 6, 18].

Progress in piecewise smooth theory and applications has relied heavily on treating the transition

at the switching threshold as a true discontinuity, that is, as an abrupt switch in the value (or

derivatives) of the vector field at a definite hypersurface in state or phase space. It is possible,
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and sometimes necessary, to peer inside the discontinuity, to blow up the switching surface into a

switching layer, revealing the fast dynamics of transition through the discontinuity. This can reveal

terms in the vector field or its flow that are important inside the discontinuity, but are not directly

discernible from outside the switching surface, and these are called hidden terms. To try and open

up this field of inquiry, we present here novel oscillatory and chaotic attractors made possible by

hidden terms, and we present bifurcations that can only made sense of via hidden dynamics.

Rather than make a fully detailed treatment of each case, in this expository paper we give

examples showing the typical role of hidden terms, aimed at providing a basis for more complete

classification studies in the future. Normal forms or topological classification schemes do not yet

exist which take account of the switching layer, and given some uncertainty in piecewise smooth

theory concerning such notions (see e.g. [10]), a preliminary exploration such as we give here

is warranted. The elementary behaviours we show will merely hint at the zoo of singularities

and bifurcations that remain to be studied, and invite more detailed and rigorous studies of the

examples given.

We illustrate the role of hidden terms in two parts. First we present attractors that are hidden

inside the switching layer, whose existence cannot be inferred from the system outside the switching

surface, but are evident in the system’s dynamics. Secondly we study a few bifurcations that appear

in standard literature, showing that they possess degeneracies inside the switching layer which

require hidden terms to break. In some cases, revealing hidden dynamics inside the switching layer

can help make sense of changes of attractivity. We will show examples where equilibria appear

to change attractivity abruptly, without any exchange of attractivity with the environment via

e.g. the creation or destruction of a limit cycle, and we show that a conventional, but hidden,

bifurcation is actually responsible.

We first briefly review the key elements of sliding modes and switching layers in section II.

Then in section III we describe novel oscillatory dynamics caused by hidden terms, beginning with

relaxation oscillations inside a single switch, and then reviewing two cases from recent literature

on multiple switches, namely limit cycles induced by ‘cross-talk’ between a pair of switches, and

a Lorenz attractor hidden inside the intersection of three switches. In section IV we re-consider

two bifurcations that have appeared in classifications of planar vector fields with a single switch,

revealing their degeneracies, and the hidden dynamics that resolves them, and review an impor-

tant case of hidden bifurcation induced by multiple switches. Some closing remarks are made in

section V.
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II. THE PIECEWISE SMOOTH APPROACH

We study systems of ordinary differential equations, defined by smooth vector which take dif-

ferent values f i on adjacent domains Ri,

ẋ =
{

f i(x) for x ∈ Ri , i ∈ I
}

,

where I is some set of m different labels (e.g. the integers 1, 2, ...,m, or, as we shall use later, a

binary representation of them). The boundaries between regions form a switching surface, which

we will assume is formed by a set of transversal hypersurfaces hj(x) = 0 for j = 1, 2, ..., r, allowing

the system to be expressed as

ẋ = f(x;λ) , λi = sign (hi(x)) , (1)

where x = (x1, x2, ..., xn), f = (f1, f2, ..., fn), λ = (λ1, λ2, ..., λr), for integers n ≥ r > 0, where

m = 2r. Each vector field f(x;λ) or f i(x) can be assumed to be smooth in x. Outside the

switching surface, where all hj are nonzero, the system (1) therefore has smooth and unique

solutions. Extending these solutions across the switching surface requires a more precise definition

than (1).

A. Dynamics in the switching layer

At a single switching surface given by h1(x) = 0, the system (1) becomes

ẋ = f(x;λ1) , λ1 = sign (h1(x)) , (2)

and following [5, 12] we extend this across h1 = 0 by writing

ẋ = f(x;λ1) =
1 + λ1

2
f+(x) +

1− λ1

2
f−(x) +

(

λ2
1 − 1

)

g(x;λ1) , (3)

with λ1 = sign(h1) for h1 6= 0, and λ1 ∈ (−1,+1) for h1 = 0, for some smooth vector fields

f+, f−, and g. Outside the switching surface the vector field on the righthand side is simply

f+(x) ≡ f(x; +1) (for h1 > 0) or f−(x) ≡ f(x;−1) (for h1 < 0), consistent with (1). The vector

field g affects the system only on h1 = 0, and is not fixed by comparison with (1). In this paper

we will demonstrate when such a term is necessary.

Examples of the way g may affect physical systems were suggested in [12, 14], and the nonlinear

dependence on λ1 introduced by g is shown to be necessary for the structural stability of certain
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common singularities in [13]. In this paper we explore these ideas more widely by studying the

role of hidden terms in attractors and in bifurcations.

The dynamics of λ1, namely the transition of λ1 between ±1 at the switching surface, is induced

by the change in h1 as it passes through zero, which suggests defining the dynamics of λ1 as

λ′

1 = f(x;λ1) · ∇h1(x) for λ1 ∈ (−1,+1) , (4)

where the prime denotes differentiation with respect to an instantaneous transition timescale,

τ = t/ε, for infinitesimal positive constant ε. Combined with the original system ẋ = f(x;λ1), and

taking coordinates in which x1 = h1, the result is a two timescale system on the switching surface,

λ′
1 = f1(0, x2, ..., xn;λ1)

(ẋ2, ..., ẋn) = (f1(0, x2, ..., xn;λ1), ..., fn(0, x2, ..., xn;λ1))







on x1 = 0 . (5)

This defines dynamics on λ1 ∈ (−1,+1) and (x2, ..., xn) ∈ R
n−1, which we call the switching layer,

and we call (5) the switching layer system.

Equilibria of the one-dimensional subsystem (4), if they exist, form sliding modes which satisfy

0 = f1(0, x2, ..., xn;λ1)

(ẋ2, ..., ẋn) = (f1(0, x2, ..., xn;λ1), ..., fn(0, x2, ..., xn;λ1))







on x1 = 0 . (6)

These evolve on the manifold

MS =
{

(λ, x2, ..., xn) ∈ (−1,+1)× R
n−1 : f1(0, x2, ..., xn;λ) = 0

}

. (7)

This is an invariant manifold of the switching layer system (5) everywhere that MS is normally

hyperbolic, that is, excepting the set where ∂f1
∂λ

= 0, namely

L =

{

(λ, x2, ..., xn) ∈ MS :
∂

∂λ
f1(0, x2, ..., xn;λ) = 0

}

. (8)

These principles form the basis all of the analysis to be carried out below. We shall also apply

them to systems with multiple switches, for which they are easily extended as follows. At a point

where r switching surfaces intersect, given by h1 = h2 = ... = hr = 0, the combination (3)

generalises (see [11]) to

ẋ = f(x;λ) =
∑

p1,...pr=±

λ
(p1)
1 ...λ(pr)

r fp1...pr(x) + Γ(x;λ) , λ
(±)
i =

1± λi

2
. (9)

where λ = (λ1, λ2, ..., λr), where f±±... are 2r smooth vector fields, each applying on one of the

regions Ri for i = 1, 2, 3, ..., 2r . The vector field Γ generalises the hidden term (λ2
1 − 1)g from (3),

satisfying

h1h2...hrΓ(x;λ) = 0 , (10)
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so that Γ is only nonzero if one or more of the hj vanishes. Extending (5), we take coordinates

such that xj = hj for j = 1, 2, ..., r, and form a switching layer system by writing

(λ′
1, ..., λ

′
r) = (f1(x;λ) , ..., fr(x;λ))

(ẋr+1, ..., ẋn) = (fr+1(x;λ), ..., fn(x;λ))







on x1 = ... = xr = 0 , (11)

the switching layer being the region

(λ1, ..., λr) ∈ (−1,+1)r , (xr+1, ..., xn) ∈ R
n−r .

The primes on the lefthand side of (11) denote differentiation with respect to instantaneous tran-

sition timescales. These timescales need not be identical (as we shall see in section IIIB), so for

infinitesimal constants ε1, ε2, ..., εr , the primes denote

λ′

1 ≡ ε1
d

dt
, λ′

2 ≡ ε2
d

dt
, . . . , λ′

r ≡ εr
d

dt
. (12)

If equilibria of the primed subsystem exist, the λj ’s collapse in fast time to values given by

(0, ..., 0) = (f1(x;λ) , ..., fr(x;λ))

(ẋr+1, ..., ẋn) = (fr+1(x;λ), ..., fn(x;λ))







on x1 = ... = xr = 0 . (13)

Solutions of (13) are codimension r sliding modes, defining dynamics sliding along the intersection

of r switching surfaces. Sets of points where sliding modes exist form manifolds

MS =







(λ1, ..., λr) ∈ (−1,+1)r

(xr+1, ..., xn) ∈ R
n−r

:
fi(0, .., 0, xr+1 , ..., xn;λ1, ..., λr) = 0

for i = 1, ..., r







. (14)

These are normally hyperbolic except at points on a set

L =

{

(λ1, ..., λr, xr+1, ..., xn) ∈ MS : det

∣

∣

∣

∣

∂(f1, ..., fr)

∂(λ1, ..., λr)

∣

∣

∣

∣

= 0

}

, (15)

so the sets MS\L form invariant manifolds of the flow, on which the sliding modes exist.

For any number of switches r, equilibria of the full switching layer system (where the righthand

side of (11) vanishes), correspond to equilibria of the sliding system (13) (sometimes called pseu-

doequilibria in the piecewise smooth dynamics literature). Their stability can be studied by finding

the jacobian of the vector field (11) evaluated at the fixed points, however it is important to make

the timescales implicit in the prime notation explicit using (12), and the jacobian evaluates as





∂(λ̇1,...,λ̇r)
∂(λ1,...,λr)

∂(λ̇1,...,λ̇r)
∂(xr+1,...,xn)

∂(ẋr+1,...,ẋn)
∂(λ1,...,λr)

∂(ẋr+1,...,ẋn)
∂(xr+1,...,xn)



 =





∂(ε−1

1
f1,...,ε

−1
r fr)

∂(λ1,...,λr)
∂(ε−1

1
f1,...,ε

−1
r fr)

∂(xr+1,...,xn)

∂(fr+1,...,fn)
∂(λ1,...,λr)

∂(fr+1,...,fn)
∂(xr+1,...,xn)



 . (16)
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These elements, equations (9)-(11) and the concepts (13)-(16) derived from them, form the basis

of everything that follows.

Each of the following examples is simple enough that we can sketch the piecewise smooth flows

(9) for λi = sign(hi), the switching layer flows (11) for hi = 0, and the sliding dynamics (13) on

manifolds (14). A stability analysis of any equilibria in the switching layer proceeds from finding

the jacobian (16).

III. HIDDEN SWITCHING ATTRACTORS

A hidden attractor of switching is a local or global attractor of the dynamical system, at least

part of which lies inside the switching surface, but whose existence is not apparent from an inspec-

tion of the vector fields outside the switching surface. (The term should not be confused with the

‘hidden attractors’ of Leonov – attractors that are difficult to locate due to the form of their basins

of attraction [19]). Novel attractors at the intersection of two or three switches have been reported

in [8, 21], and hint at the range of non-trivial phenomena that may arise from such examples, so

we review these briefly here. We begin, however, with an example of a planar system with a single

switch.

A. Hidden van der Pol oscillator

The system

(ẋ1, ẋ2) =
(

1
10x2 + λ− 2λ3, −λ

)

where λ = sign(x1) , (17)

is deceptively simple for x1 6= 0,

(ẋ1, ẋ2) =







(

1
10x2 − 1, −1

)

if x1 > 0 ,
(

1
10x2 + 1, +1

)

if x1 < 0 ,
(18)

illustrated in figure 1(i). The surface x1 = 0 is attracting.

In (17) we have a nonlinear switching term λ−2λ3 = −λ+2λ(1−λ2), the latter part constituting

a ‘hidden term’ since it vanishes outside x1 = 0. In the typical convex method (usually called a

Filippov system [1, 5, 18]) we would ignore the hidden term, writing (ẋ1, ẋ2) =
(

1
10x2 − λ, −λ

)

consistent with (18), and then we would find that the point x1 = x2 = 0 is a simple attractor. We

shall look instead at the effect of including the nonlinear dependence on λ.
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The switching layer system, obtained by substituting (17) into (5), reveals a van der Pol oscil-

lator,

(λ′, ẋ2) =
(

1
10x2 + λ− 2λ3, −λ

)

for x1 = 0 , λ ∈ (−1,+1) . (19)

The switching parameter λ thus undergoes relaxation oscillations, hidden inside x1 = 0, shown

in figure 1(ii). The relaxation oscillations cause λ to fluctuate inside the layer λ ∈ (−1,+1), and

(i)

4

2

0

−2

−4

4

2

0

−2

−4

−4        −2         0         2         4 −1      −0.5          0         0.5          1

x2

x2

x1 λ

(ii)

FIG. 1: Simulations of (17) showing: (i) the flow in the (x1, x2) plane, (ii) the flow inside x1 = 0 given by (19).

cause x2 to fluctuate between the folds of the curve 1
10x2 = 2λ3 − λ. The oscillations in x2 are

on the normal timescale of the system (t rather than τ = t/ε from (4)). In figure 2(i) we plot

the resulting graphs of x2 and λ against time, and in (ii) a trajectory is simulated in the space of

x1, x2, λ.

0                 10                20                 30t

2

1

0

−1

−2

0.5

1

0

0
0

−0.5

−1

−2

2

x1

x2
λ

λ

x2

(i) (ii)

FIG. 2: Simulations revealing the hidden dynamics of (17): (i) graphs of the variable x2 and λ, (ii) the corre-

sponding orbit in the space of (x1, x2, λ), with the switching surface at x1 = 0.

In this example, oscillations inside the switching surface arise due to nonlinear dependence on

the switching parameter λ = λ1, creating a hidden van der Pol oscillator that affects the sliding
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dynamics. If we have multiple switches then similar phenomena occur with only linear dependence

on the individual switching parameters λi, as the following examples show.

B. Crosstalk oscillations

A rather clear example of hidden oscillations was noted by Guglielmi and Hairer in [8], where

their significance for numerical simulation was highlighted. They also have significance if they affect

a larger discontinuous system (i.e. a system with more dimensions), as we will show. Consider the

planar piecewise-constant system

(ẋ1, ẋ2) =
(

λ2 − λ1 + λ1λ2, 3(
1
2λ2 − 2λ1 + λ1λ2)

)

, (20)

with λ1 = sign(x1), λ2 = sign(x2). The origin is a simple attractor in (x1, x2) space. Solutions

spiral around, crossing through the switching surfaces until they reach the half-line {x1 = 0 > x2},
then slide in towards the intersection. Solutions to the sliding problem (6) exist only on the half-

line {x1 = 0 > x2}, where the switching layer system is (λ′
1, ẋ2) =

(

−1− 2λ1, −3(12 + 3λ1)
)

, giving

sliding modes with λ1 = −1/2, ẋ2 = 3.

The switching layer system the intersection is rather more interesting, given by substituting

(20) into (11) with r = 2,

(λ′

1, λ
′

2) =
(

λ2 − λ1 + λ1λ2, 3(
1
2λ2 − 2λ1 + λ1λ2)

)

, (21)

We make the relative timescales explicit using (12), so

λ′

1 = ε1λ̇1 , λ′

2 = ε2λ̇2 ,

for infinitesimal positive ε1 and ε2. The combined phase portraits are shown in figure 3, and differ

qualitatively for different values of ε1 and ε2, showing a focal attractor in (i), a focal repeller in

(ii) and a nodal repeller in (iii); in the repelling cases inspection of the flow reveals the existence

of a limit cycle as illustrated, and we will confirm its existence with simulations below.

The switching layer system has an equilibrium at (λ1λ2) = (0, 0), where the jacobian (16)

evaluates as




∂λ̇1

∂λ1

∂λ̇1

∂λ2

∂λ̇2

∂λ1

∂λ̇2

∂λ2



 =





−ε−1
1 ε−1

1

−6ε−1
2

3
2ε

−1
2





with determinant 9/2ε1ε2 > 0 implying that the equilibrium is a focus or node, and trace 3
2ε

−1
2 −ε−1

1

implying the origin is attracting for ε2/ε1 > 3/2, repelling otherwise, with a Hopf bifurcation when
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x1λ1

λ2

(i) (ii) (iii)x2

FIG. 3: Sketch of the piecewise smooth system, including the switching layers, where {ε1, ε2} are: (i) {0.02.0.04},
(ii) {0.02, 0.02}, (iii) {0.08, 0.02}.

ε2/ε1 = 3/2. The Hopf bifurcation is supercritical, creating the attracting limit cycle as shown in

figure 3, wrapping partly around the boundary of the switching layer.

This cycle is bounded to the interior and edges of the switching layer λ1,2 ∈ (−1,+1), inhabiting

the intersection where the variables x1 and x2 are fixed at zero, so it may seem that these oscillations

are of little practical consequence. This is false, however, and we will illustrate two simple ways

that such oscillations can significantly impact a system.

Consider the planar system (20) to be coupled to a third variable whose dynamics involves the

switching parameters λ1 or λ2 in some way, for example

ẋ3 = µ(λ1 − x3) . (22)

If the positive constant µ is large enough then x3 tracks the value of λ1 very closely, and the hidden

oscillations become visible. Figure 4 (bold curve) shows a simulation of the value of λ1(t), which

x3(t) attempts to track, collapsing to a steady state in (i), and forming oscillations in (ii) and (iii).

These oscillation are infinitely fast (they occur the timescale t/ε1,2 where ε1,2 are infinitesimal), so

they are shown as a band of values (the shaded rectangle) in figure 3.

(i) (ii) (iii)

t1 2 3 t1 2 3 t1 2 3

xi xi xi

1

000

11

FIG. 4: Coupling of (20) to a third variable can make hidden oscillations observable. The value of λ1(t) is

simulated here with (i)-(iii) corresponding to figure 3. The bold curve is λ1(t), which at t ≈ 0.8 starts oscillating

infinitely fast in the region shaded. The dashed curve shows x2(t) which settles to zero at t ≈ 0.8, and the thin

curve shows x1(t) which settles to zero at t ≈ 0.4.
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The value of x3(t) will average over these oscillations, and the precise value it takes will depend

on the precise form of (22), as well as the absolute size of the constants ε1,2, which in applications

are likely to represent small rather than infinitesimal constants. This is the case if we simulate the

system above by smoothing the discontinuity, which we consider now.

The consequences of the hidden oscillations for simulations performed by smoothing the dis-

continuity into a steep but smooth switch were highlighted in [8]. The oscillations are immediately

brought to life. If we approximate the discontinuous system by replacing each λi = sign(xi) with

a steep sigmoid function, say λi = tanh(xi/εi), the limit cycles become cycles of order εi in their

respective directions (which is weaker than confining them strictly to the regions |xi| < εi). The

simulations in figure 5 show, in fact, the limit cycles reaching as far as |x2| = 4εi, creating signifi-

cant and observable oscillations. In (i) a trajectory crosses through x2 = 0 before hitting x1 = 0,

x1

x2

x1 x1 x1

(i)

0.5

−0.5

−0.5 0.5

(ii) (iii)

t

x1

x2

x1

x2

0.2

000

0.20.2

1 2 3 t1 2 3 t1 2 3

0.5

−0.5

−0.5 0.5

0.5

−0.5

−0.5 0.5

FIG. 5: Smoothing of (20) can make hidden oscillations observable. Simulations are shown in the (x1, x2) plane

(top) and plotting x1(t) (bottom), with (i)-(iii) corresponding to figure 3.

sliding towards the intersection, and then reaching a fixed point as implied by the switching layer

dynamics above. In (ii) and (iii) the intersection is repelling and creates an oscillation, which is

larger in (iii) when the switching layer is nodally, rather than focally, repelling.
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C. Hidden Lorenz attractor

In the same vein as the previous example, a model with hidden oscillations at an intersection

of three switches was reported in [21],

d
dt
x1 = 5(λ2 − λ1)− 75x1 ,

d
dt
x2 = −λ1 − 15λ1λ3 − 1

2λ2 − 75x2 ,

d
dt
x3 = 15λ1λ2 − 4

3 − 4
3λ3 − 75x3 ,

(23)

where λj = sign(xj) for j = 1, 2, 3. This model is inspired by gene regulatory networks [21], where

the switches are Hill functions Zj =
1
2 +

1
2λj where threshold gene concentrations yj = xj +

1
4 cross

threshold values yj =
1
4 . The triple intersection point x1 = x2 = x3 = 0 is a simple nodal attractor

in (x1, x2, x3) space, so the system appears trivial, as illustrated in figure 6(i).

The dynamics on each individual surface x1 = 0, x2 = 0, x3 = 0, found by seeking sliding modes

using (6) applied separately to λ1, λ2, and λ3, is not particularly interesting. At their intersection,

however, applying (11) with r = 3 to (23), we obtain the switching layer dynamics

λ′
1 = 5(λ2 − λ1) ,

λ′
2 = −λ1 − 15λ1λ3 − 1

2λ2 ,

λ′
3 = 15λ1λ2 − 4

3 − 4
3λ3 ,

(24)

on x1 = x2 = x3 = 0. By construction (and as was shown in [21] by singular perturbation

analysis, whose relation to our switching layer analysis is described in [13]), if we assume the three

primed timescale are the same (ε1 = ε2 = ε3 in (12)) then this has a Lorenz attractor inside

λ1, λ2, λ3 ∈ (−1,+1). So while each xi is attracted to the intersection point and then remains

fixed, the switching parameters λi enter into chaos.

Similar to the previous example, the chaos in the switching parameters is not directly observ-

able through the variables x1,2,3, which are attracted to the origin and then remain there. The

implications of oscillating λi values may be interesting to consider in specific applications, but

they become more apparent if the three dimensional system is coupled to a fourth (or fifth, etc.)

variable. Then the effects of this chaos may be readily observable, for example adding

ẋ4 = µ(λ1 − x4) , (25)

for a sufficiently large constant µ, the variable x4 will track the chaotic value λ1 while the variables

x1 = x2 = x3 = 0 remain fixed. The solution for x4 coupled with (23) is simulated in figure 7, and

exhibits chaotic spiking behaviour while x1, x2, x3, remain at zero.
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1x3

x2

x1

λ1

0
λ3

λ2

FIG. 6: Global attractor in x1, x2, x3 space, and a Lorentz attractor in the switching layer inside (x1, x2, x3) =

(θ1, θ2, θ3).

100                    200                    300                    4000.2               0.4               0.6 0

0.6

0.4

0.2

x4

x4 t

x
1

,2
,3

FIG. 7: Hidden chaos made visible: the dynamics of the system (23) with (25), showing a representation of the

dynamics in (x1, x2, x3, x4) space where the trajectory collapses onto the line {x1 = x2 = x3 = 0, x4 ∈ R}, and
a simulation of the chaotic solution x4(t) for µ = 1.

The three examples above demonstrate that hidden attractors of switching can take almost any

of the interesting forms known in nonlinear dynamics, induced by any number of switches. Rather

than suggest a general classification, we have therefore highlighted the ease with which they arise,

and the ways they may be recognised in observations of physical data or in spurious behaviour

of simulations. The last two examples were inspired by mathematical biology of gene regulatory

networks, but given the ease with which they appear, these and countless other examples may have

a significant role in physical and biological switching processes.

The next section moves on to systems where we show that hidden terms are required to remove

degeneracies in simple scenarios that appear in the standard classifications of piecewise smooth

systems.



13

IV. HIDDEN BIFURCATIONS

Similarly to a hidden attractor of switching, we can define a hidden bifurcation (of switching)

as a local or global bifurcation in a dynamical system, where the bifurcating object lies at least

partly inside the switching surface, and whose existence is not apparent from an inspection of the

vector fields outside the switching surface.

Bifurcations of basic singularities of planar systems, particularly of equilibria hitting the switch-

ing surface (boundary equilibrium bifurcations), or of tangencies between a vector field and the

switching surface, have been a key point of interest in recent piecewise smooth systems theory, e.g.

in [1, 5, 6, 18]. We revisit two elementary cases here that have the quirk that the attractivity of an

equilibrium flips in an unexplained way, and we reveal the hitherto unconsidered role of hidden dy-

namics in such bifurcations. We consider one boundary equilibrium bifurcation and one tangency

bifurcation, both in a planar system with a single switch. Lastly we show a hidden bifurcation in

two dimensions that determines the passibility or not of a switching threshold.

A. The flipping node

Consider the planar system

(ẋ1, ẋ2) =
1 + λ

2
(x1 + 2x2 − α, x2) +

1− λ

2
(1, 3) , (26)

where λ = sign(x1) for x1 6= 0, and α is a bifurcation parameter. For α ≥ 0 this system has a

repelling node at x1 = α, x2 = 0. As we decrease α through zero the node hits the switching

surface. From the arrangements of the vector fields it is simple to sketch the phase portrait, shown

in figure 8. (This was studied recently in [10], the singularity at α = 0 having been given in [5],

and the omission of this case from more recent classifications of boundary equilibrium bifurcations

such as [1, 6, 18] highlights the subtle difficulty of qualitative nonsmooth dynamics).

Analysing the switching layer dynamics by substituting (26) into (5), we find that there is a

sliding manifoldMS as defined in (7), given by (λ, x2) ∈ (−1,+1)×R such that λ = 1+2x2−α
1−2x2+α

, which

exist for x2 < α/2 (ensuring λ ∈ (−1,+1)). Substituting λ into (27) gives the sliding dynamics

ẋ2 = 3α−5x2

1−2x2+α
, x1 = 0. The denominator of ẋ2 is positive since x2 < α/2 < (1 + α)/2, then the

numerator implies that there exists an attractor (a psuedoequilibrium) in the sliding dynamics at

x∗2 = 3α/5, and since this can exist only for x∗2 = 3α/5 < α/2, the sliding equilibrium exists only

for α < 0.
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α>0 α=0 α<0

x2

x1

FIG. 8: As α changes sign, a repelling node hits the switching surface, and becomes an attracting (equilibrium-)

node in the sliding dynamics.

This seems to complete the picture of this simple bifurcation. There is one fixed point in the

system, given for α > 0 by a repelling node in x1 > 0, which approaches the switching surface as

α changes sign, and becomes for α < 0 an attracting node on x1 = 0 in the region x2 < 0.

The curiosity of this boundary equilibrium bifurcation is that the attractivity of the node flips

during the bifurcation. To see how this happens requires closer inspection of the dynamics on

x1 = 0.

The switching layer system, given by substituting (26) into (5), is

(λ′, ẋ2) =
1 + λ

2
(2x2 − α, x2) +

1− λ

2
(1, 3) on x1 = 0 , (27)

which has an equlibrium at λ∗ = (5+α)/(5−α) with x∗2 = 3α/5, corresponding to the equilibrium

found above for α < 0. This means we can understand the node as entering the switching layer at

λ = +1 when α becomes negative. Introducing the infinitesimal ε by (12), the jacobian (16) (for

r = 1) at this equilibrium is





∂λ̇
∂λ

∂λ̇
∂x2

∂ẋ2

∂λ
∂ẋ2

∂x2



 =
1

2ε





α
5 − 1 4

1−α

5

3(α5 − 1)ε 2
1−α

5

ε



 ,

with determinant and trace

det =
5

2ε
, tr =

1

2ε

{

2ε− (
α

5
− 1)2

}

/(1− α

5
) .

These reveal that the equlibrium is an attractor for α < 5(1−
√
2ε), hence for small α (with small ε

by definition) it is always an attractor. For small α and ε, specifically for (11−2
√
30)(α−5)2−50ε >

0 (e.g. for ∀α if ε = 0, for ε < 1/2(11+2
√
30) ≈ 0.023 if α = 0) the eigenvalues are real, indicating

a node.

Thus at α = 0 we have a matching of two opposing systems describing the node at x1 = x2 = 0,

that of a repelling node outside the switching layer, and an attracting node inside the layer, yielding
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the phase portraits in figure 9. We can describe this as a folded node, the stitching together of

phase portraits of nodes that are attracting and repelling on different halves of the plane. The

figure reveals that when α = 0, there exist a whole family of cycles through the folded singularity,

in the region bounded by MS and the strong unstable manifold of the repelling node (labelled U).

α>0 α=0 α<0
x2

x1λ

MS
U MS MS

U

FIG. 9: The bifurcation in figure 8 with the switching surface x1 = 0 blown up into a layer λ ∈ (−1,+1).

This gives more insight into the phase portrait at α = 0, but reveals that the α = 0 system

is degenerate, in the sense that it contains a folded node on the boundary of the switching layer

λ = +1, associated with an infinite family of closed cycles. The degeneracy is not broken by adding

functions of x1 or x2 to (26), but it can be broken by adding a term nonlinear in λ. A simple

perturbation of (26), say

(ẋ1, ẋ2) =
1 + λ

2
(x1 + 2x2 − α, x2) +

1− λ

2
(1, 3) + (λ2 − 1) (β, 0) , (28)

will be sufficient, with β > 1/4. In this system, the degeneracy that occurred at α = 0 is broken,

and revealed as a Hopf bifurcation. We show this as follows.

The system outside x1 = 0 is unchanged because β affects only the switching layer, where

λ ∈ (−1,+1). The equilibrium in the switching layer for this perturbed system lies at λ∗ =

1
4β (α− 5−R), x∗2 = 3

10 (α+ 5 + 4β +R), where R =
√

(α− 5)2 + 8β(α + 5 + 2β), and the asso-

ciated jacobian (16) becomes




∂λ̇
∂λ

∂λ̇
∂x2

∂ẋ2

∂λ
∂ẋ2

∂x2



 =
1

2ε





1
5 (3(α− 5) + 12β + 2R) 2(1 + 1

4β (α− 5 +R))

3
10 (r −R) ε (1 + 1

4β (α− 5 +R))ε





where r = α − 5 + 4β. Its trace is tr = 1
10 (3(α − 5) + 12β + 2R) + ε

2(1 +
1
4β (α− 5 +R)), which

in the ε → 0 limit becomes 1
10 (3(α− 5) + 12β + 2R). Most importantly, at the bifurcation this is

tr = 1
2(4β − 1), which is positive for β > 1/4, hence at the bifurcation the equilibrium is now a

simple repelling node, and the degeneracy is broken, the point x1 = x2 = 0 now being a repelling

node both inside and outside the switching layer.
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The flip in attractivity of the node now occurs via a Hopf bifurcation inside the switching layer,

occurring when the trace vanishes, 0 = tr = 1
10 (3(α − 5) + 12β + 2R) + ε

2(1 + 1
4β (α− 5 +R)) =

1
10 (3(α − 5) + 12β + 2R) + O (ε), at an α value

αh = αh0 − 3ε/
√

β + O
(

ε2
)

, where αh0 = 5− 8
√

β − 4β . (29)

Prior to this, as α decreases from zero, the equlibrium changes from a node into a focus, when the

eigenvalues of the jacobian change from real to complex, at 0 = 8β2r2+40β(8β−5ε)2−9600β2ε+

(8β − 5ε)(12β − 5ε) (r +R) r = 8β2r2 +40β(8β − 5ε)2 − 9600β2ε+ (8β − 5ε)(12β − 5ε) (r +R) r+

O
(

ε2
)

, at an α value

αf = αh0 ± 12
√
3ε+ O (ε) . (30)

The resulting phase portrait is shown in figure 10.

α>0 α=0
x2

x1λ

α<αhαh<α<0

LC

LC

LC

MS

MS MS MSU
U

FIG. 10: The bifurcation in the perturbed system as α passes through α = 0 and αh. A limit cycle labelled LC

in (ii-iii), shrinks until a supercritical Hopf bifurcation occurs, giving the change in the equilibrium’s attractivity

from (iii) to (iv).

The bifurcation is split into stages, by means of which the node is able to change from repelling

for α > 0 to attracting for α < 0, and we will describe these qualitatively.

There first exists the repelling node outside the switching layer (shown in the first picture),

and all trajectories in the system evolve towards infinity. The continuation of the sliding manifold

MS forms an orbit, labelled LC and shown in bold, which will be important in the subsequent

bifurcation.

At α = 0 the node touches the boundary layer, but otherwise the phase portrait is not critically

different from α > 0. At α = αf (not shown) this node becomes a repelling focus, resulting (since

0 < αf < αh) in the third picture in figure 10 for α < αf . At some 0 < α < αh between the

second and third pictures, the trajectory LC emitted from MS intersects the strong manifold of
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the vanished equilibrium of the x1 > 0 system (labelled U), after which LC is seen to form an

attracting limit cycle surrounding the focus.

At α = αh the limit cycle shrinks to zero and thus the focus’s attractivity changes in a super-

critical Hopf bifurcation, giving the far right picture in figure 10. At some further α = αf < αh,

not shown, the equilibrium will become a node again, now attracting.

These features, particularly the existence of the limit cycle, are implied by the local phase

portrait. To prove these steps rigorously requires matching the different flows outside the layer

with those inside the layer on and off of MS . We omit such lengthy analysis here, but support

and illustrate the results with simulations as follows.

We simulate an approximation of (28) in which the discontinuity is replaced by a steep sigmoid

function, replacing λ = sign(x1) with λ = tanh(x1/ε) with ε = 10−3. Singular perturbation

analysis of piecewise smooth systems [22, 25] imply that such a system should approximate the

dynamics found in the switching layer analysis above. The resulting flows are shown in figure 11,

for α values corresponding to those in figure 10. The x1 scale is stretched inside the region |x1| < ε,

which is analogous to blowing up the switching layer, to reveal the Hopf bifurcation in the switching

layer.

−1      −ε          0          ε          1

1

0.5

0

−0.5

x2

x1

(i)

−1      −ε          0          ε          1

0.5

0

−0.5

−1

x2

x1

(ii)

−1      −ε          0          ε          1

−2.5

−3

−3.5

−4

x2

x1

(iii)

−1      −ε          0          ε          1

−3.5

−4

−4.5

−5

x2

x1

(iv)

FIG. 11: Simulation of a smoothing of (28) with β = 1/2, at α values (i) 0.5, (ii) 0, (iii) −6, (iv) −8. The thin

curve in all four pictures is the set λ′ = 0, which approximates the sliding manifold MS in the limit ε → 0 and

where it is not close to horizontal. The limit cycle in (iii) is shown.

The flow exhibits the qualitative behaviour predicted above, namely that a repelling node enters

the switching layer (now |x1| < ε) at α = 0, becomes a repelling focus surrounded by an attracting

limit cycle, which is annihilated in a Hopf bifurcation as the focus changes stability.

Clearly this bifurcation is interesting in itself and warrants more detailed analysis, but we

shall leave deeper study to future work, having shown the role of hidden terms in breaking the

degeneracy. We shall now compare this to one other case of flipping attractivity, this time induced
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by a bifurcation of tangencies and resulting in a more obvious degeneracy, and will see the the

resolution is similar in principle.

B. The flipping pseudonode

Proceeding along similar lines to the last section, consider the system

(ẋ1, ẋ2) =
1 + λ

2

(

x2 − 2α, 2 + β̂x2

)

− 1− λ

2
(x2, 1) + (λ2 − 1)(β, 0) , (31)

where α is a bifurcation parameter and β, β̂, are constants. In this section we introduce perturba-

tions β and β̂ from the outset. The phase portrait with β = β̂ = 0, shown in figure 12, appears

at first to unfold a simple bifurcation in which the relative position of two tangencies along the

switching surface is exchanged. (For more details of this with β = β̂ = 0 see [18]).

α>0 α=0 α<0

x2

x1

FIG. 12: A bifurcation in which visible (‘curving away from x1 = 0’) and invisible (‘curving towards x1 = 0’)

folds in the flow exchange ordering, is accompanied by a (pseudo)-node changing from attracting to repelling.

The switching layer system, given by substituting (31) into (5), is

(λ′, ẋ2) =
1 + λ

2

(

x2 − 2α, 2 + β̂x2

)

− 1− λ

2
(x2, 1) + (λ2 − 1)(β, 0) on x1 = 0 . (32)

Neglecting β to begin with, the switching surface is attracting for x2 < min(0, 2α) and repelling

for x2 > max(0, 2α) (for small β these boundaries change only slightly). Sliding modes exist where

λ = α/(x2 − α) for |α/(x2 − α)| < 1, and their dynamics is given by ẋ2 = x2+2α
2(x2−α) . The sliding

system itself has a node type equilibrium where (32) vanishes, at x∗2 = −2α, λ∗ = −1/3. Near

this equilibrium we can expand ẋ2 = −(x2 + 2α)/6α + O
(

(x2 + 2α)2
)

, implying that the node is

attracting for α > 0 and repelling for α < 0.

So as α changes from positive to negative with β = β̂ = 0, an attracting node in negative x2

moves to become a repelling node in positive x2, as sketched in figure 13. We omit the calculations

for β = β̂ = 0 because, as in the previous section, some explanation is now required for how the

flip in attractivity occurs.
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α>0 α=0
x2

x1λ

α<0

FIG. 13: The bifurcation in figure 12, with x1 = 0 blown up into the layer λ ∈ (−1,+1).

For β = β̂ = 0, the switching layer system (32) actually contains two topological degeneracies

which coincide with the flip in the node’s attractivity, firstly because (32) becomes a centre when

α = 0, and secondly because the nullcline λ′ = 0 has segments lying parallel to the fast (λ)

direction when α = 0, the latter of which illustrated in figure 13. The first of these is broken by

taking β̂ 6= 0, as is easily verified by simulation of the switching layer system. The Sotomayor-

Teixeira regularization [25] of such a system is studied in [17] using singular perturbation methods,

but this does not break the second degeneracy, which indeed can only be broken by taking β 6= 0

(see [13] for a general study of this degeneracy). We will set β̂ to zero, since β 6= 0 is sufficient to

break both degeneracies.

Sliding modes, found by applying (6) to (31), are given by solving λ′ = 0 in (32), and thus

satisfy βλ2+(x2−α)λ−β−α = 0, with solutions λ = α−x2

2β ±
√

(α−x2)2

4β2 + 1 + α
β
, and |λ| < 1 then

implies that sliding modes exist for (x2 − α)2 > −4β2(1 + α
β
). The switching layer equilibrium lies

at λ∗ = −1/3, x∗2 = −2α− 8β/3, with jacobian





∂λ̇
∂λ

∂λ̇
∂x2

∂ẋ2

∂λ
∂ẋ2

∂x2



 =
1

ε





10
3 β − 3α −1

3

3
2ε 0



 ,

whose trace changes sign at α = αh := −10
9 β, suggesting that a Hopf bifurcation occurs in the

switching layer system, facilitating the change in attractivity of the equilibrium.

The perturbation has two important consequences. First, when α = 0 the trace of the jacobian

is −10
3 β so the equilibrium is non-degenerate, and secondly, when the supposed Hopf bifurcation

occurs at α = αh, the switching layer system is given by

(λ′, ẋ2) =
1 + λ

2
(x2 − 2αh, 2)−

1− λ

2
(x2, 1) + (λ2 − 1)(β, 0) ,

which is not a centre. As a result, for β 6= 0, a non-degenerate Hopf bifurcation takes place at

α = αh = −10
9 β, which lies on one side or the other of the bifurcation of tangencies which occurs

at α = 0, depending on the sign of β.
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The switching layer is shown in figure 14. By varying α, with β either negative or positive, we

obtain the sequences of bifurcations described qualitatively as follows.

First we take negative β, shown in the top row of figure 14. For α positive and greater than αh

we begin with an attracting equilibrium inside the switching layer, which undergoes a supercritical

Hopf bifurcation at α = αh, becoming a repelling equilibrium surrounded by an attracting limit

cycle which grows as α decreases; these steps form the first three pictures. The cycle is formed by

the continuation of the sliding manifold MS under the flow. During these changes no bifurcation

is evident in the vector field outside the switching layer, and the repelling equilibrium and cycle are

a hidden repeller/attractor respectively. A α continues to decrease, the two branches of the sliding

manifold MS bifurcate to form the arrangement in the last picture, the repelling equilibrium passes

from one branch to the other in the process, and the limit cycle formed by the continuation of MS

tails off to infinity. As α passes through zero where the two tangencies exchange ordering along

the switching surface, no further qualitative changes occur inside the switching layer.

The process for positive β is slightly different, shown in the bottom row of figure 14. For α

positive and greater than αh we again have an attracting equilibrium inside the switching layer.

The continuation of the sliding manifold MS under the flow is highlighted as a bold curve, which is

important in the bifurcation. As α passes through zero, the tangencies exchange ordering along the

switching surface, the two branches of MS bifurcate, the attracting equilibrium moves from one

branch to the other, and the continuation of MS forms a limit cycle, shown in the second picture.

The equlibrium and the cycle are a hidden attractor/repeller respectively, and from the vector field

outside the switching surface the equlibrium appears to be repelling. In fact the equilibrium only

becomes repelling after a subcritical Hopf bifurcation at α = αh in the third picture, leaving a

repelling equilibrium on the repelling branch of the sliding manifold MS , as in the fourth picture.

As in the last section, we conclude by simulating the system (31) by smoothing out the dis-

continuity, replacing λ = sign(x1) with λ = tanh(x1/ε) and ε = 10−3. Similar to figure 11 we

stretch the x1 axis for |x1| < ε, to blow up the switching layer and reveal its hidden dynamics.

In figure 15, simulations are shown which correspond to the bottom row of figure 14 with β > 0,

showing a focus changing stability via a subcritical Hopf bifurcation which take place at negative

α, after the bifurcation of tangencies has occurred at α = 0.

Similar results can be achieved to resolve other bifurcations and degeneracies. The cases above

merit deeper study, as do similar bifurcations found in [1, 5, 6, 18], but to achieve a level of

generality it will be necessary to develop the notion of normal forms and topological equivalences
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αh<α
x2

x1λ

α<0α=αh 0<α<αh

αh<α<00<α
x2

x1λ

α<αhα=αh

MSMS MS
MS

FIG. 14: The bifurcation for β < 0 (implying αh > 0) is shown in the top row, giving a supercritical Hopf

bifurcation; the case for β > 0 (implying αh < 0) is shown in the bottom row, giving a subcritical Hopf

bifurcation.
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α<αh α<αhα>−β α=−β

FIG. 15: Simulation of the subcritical case. Between the second and third panels, a repelling limit cy-

cle is seen to shrink quickly from infinite size to the one show for α . αh. The specific values are

α = −7/9, −17/30, −1/2,−1/3, respectively, with β = 1/2.

between such systems much further than has been done at present. Our hope is that highlighting

examples like those above will help stimulate work in this direction.

The effect of hidden terms in bifurcations can be much simpler and less subtle than in the

examples above, as in the next example involving a planar system with two switches.
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C. Saddle-node at a switching intersection

When multiple switches occur on different surfaces h1 = 0, h2 = 0, ..., hr = 0, and those

surfaces intersect, there may be numerous vector fields pointing into and out of an intersection

simultaneously, and whether or not sliding occurs is less obvious than at a single switching surface,

even in the absence of anomalies from nonlinear dependence on some λi. The piecewise smooth

vector fields outside the switching surface can be deceptive, and analysis of the switching layer is

vital.

Consider the system

d
dt
x1 = 1

2(1− λ1λ2)− γ1(x1 + θ1)

d
dt
x2 = 1

4(3− λ1 − λ2 − λ1λ2)− γ2(x2 + θ2)
(33)

where λi = sign(xi) for some constants θ1, θ2, γ1, γ2. Nontrivial hidden dynamics in such a system

enters through the multilinear dependence on the λi’s. This example is taken from a model of

protein product concentrations xi in a two gene regulatory system [4, 24], where the switches come

in the form of Hill functions Zi = yki /
(

yki + θki
) k→∞−−−→ 1

2 + 1
2 sign(yi − θi), which we replace by

Zi =
1
2 + 1

2λi. The phase portrait of (33) is sketched in the main picture in figure 16.

0

0
(i) only

(i,ii)
(i,ii)

(i)

(ii)
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−1
−1

+1

+1
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λ2

−1
−1

+1

+1

λ1

λ2

FIG. 16: Phase portrait of the fold catastrophe in the gene model, with θ1 = θ2 = 1, γ2 = 0.9, and with: (i)

γ1 = 0.6, (ii) 0.4.

When x1 6= 0 and x2 6= 0, the system (33) is smooth and easily solved. We can apply the

transition dynamics (11) to each of the switching thresholds x1 = 0 and x2 = 0 independently. We

can work in terms of either λi or Zi, let us choose the former. Then (5) gives the switching layer

systems

(λ′
1, ẋ2) =

(

1
2(1− λ1λ2)− γ1θ1,

1
4(3− λ1 − λ2 − λ1λ2)− γ2(x2 + θ2)

)

on x1 = 0 ,

(ẋ1, λ
′
2) =

(

1
2(1− λ1λ2)− γ1(x1 + θ1),

1
4(3− λ1 − λ2 − λ1λ2)− γ2θ2

)

on x2 = 0 .
(34)
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Seeking equilibria of the fast (primed) subsystems as in (6), we find that sliding modes exist on the

surfaces x1 = 0 with x2 6= 0, and on x2 = 0 with x1 > 0, elsewhere the flow crosses the switching

surfaces. The flow slides towards the point where the two switches intersect at x1 = x2 = 0. (This

point is reached by large regions of initial conditions but is not a global attractor). To study the

switching layer inside the intersection point we apply (11) with r = 2, giving

(λ′
1, λ

′
2) =

(

1
2(1− λ1λ2)− γ1θ1,

1
4(3− λ1 − λ2 − λ1λ2)− γ2θ2

)

on x1 = x2 = 0 . (35)

This is sketched in the two panels (i-ii) in figure 16. It has potentially two equilibria, a focus and

a saddle at

{

λ±

1 , λ
±

2

}

= (1 + γ1θ1 − 2γ2θ2) {1, 1} ±
√
d {−1, 1}

where d = (12γ1θ1 + γ2θ2)
2 − γ1θ1 − γ2θ2, which exist only for d > 0, disappearing in a saddlenode

bifurcation as
{

λ±

1 , λ
±

2

}

become complex. As a result, for d > 0 the variables x1,2 become fixed

at the origin, while for d < 0 they evolve through the intersection point (0, 0) and continue along

x2 = 0 with increasing x1, as shown in the main part of figure 16.

We take the opportunity here to propose a nomenclature that will be helpful in studying in-

tersections in future work. Essentially four things can happen when a trajectory arrives at an

intersection: crossing, sticking, jamming, or pausing. When a trajectory arrives at a switching

surface intersection, we say it crosses if it passes through (either to another sliding region or to

outside the switching surface), we say it sticks if it remains on the intersection and begins sliding

along it, and we say it becomes jammed if no subsequent motion occurs because the trajectory has

impacted at a fixed point. Pausing describes a trajectory that reaches a fixed point on a switching

intersection in finite time, but which can be continued beyond that point after any arbitrary finite

time.

Figure 17 shows local portraits that lead to three of these behaviours, generated by the following

piecewise constant systems:

crossing : (ẋ1, ẋ2) = (1, 1 + λ1 − λ2) (36)

jamming : (ẋ1, ẋ2) = (−λ1,
1
2 + λ1 − λ2) (37)

pausing : (ẋ1, ẋ2) = (−λ1, λ2 + λ1λ2) (38)

where the named behaviour occurs at the intersection. Sticking occurs when the three trajectories

shown in figure 17 reach the surface x1 < 0 = x2, and would occur at the intersection in the second

example instead of jamming jamming if we added a third equation such as ẋ3 = 1.
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x1
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FIG. 17: The three basic possibilities when a trajectory reaches a switching intersection in finite time: crossing,

jamming, or pausing.

In the example of figure 16, a bifurcation inside the switching layer of the intersection permits

the system to change from jamming at the intersection to crossing through it.

The huge possibilities for the different forms of such behaviours, and their role in local and global

bifurcations, are hinted at by the examples above and the three types of behaviour in figure 17.

A study which uses hidden dynamics to classify the typical ways a trajectory may behave when it

enters an intersection of two switches in a planar system has been made in [8]. The example above

fits into the classification. For higher dimensions a full classification is generally impossible, but

the possibilities for hidden bifurcations are evidently vast.

V. IN CLOSING

The study of local attractors and local bifurcations is, despite substantial classifications for

planar systems in [5, 6, 8, 18], and even for three dimensional systems in [26], still subject to

many unsolved problems, even in the plane. These include some lack of clarity around the defi-

nitions of equivalence classes and structural stability, and questions remain about the generality

of Filippov’s usually adopted ‘convex method’ for solving at a discontinuity (noting that Filippov

himself considered much more general kinds of behaviour via differential inclusions [5] and we cited

some alternatives in the introduction), particularly in regard to physical applications of piecewise

smooth theory [1, 7]. The successes of the schemes in these references is a reason for optimism, but

evidently piecewise smooth theory is still in the early stages of addressing such problems. We hope

that highlighting attractors and bifurcations of the kind analysed here will encourage deeper study

of the issues they raise in regard to the dynamics that is possible at a switch and the degeneracies

it can suffer.

The first example presented here, that of a van der Pol oscillator hidden inside the switching

layer, is an example of phenomena exhibited only if a system has a nonlinear dependence on the
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switching parameter λ = sign(h). The two examples that followed, of limit cycles and chaotic

attractors, showed that such conditions arise inescapably in systems with multilinear products

λ1λ2... between different switching parameters.

The examples of bifurcations given here, whose resolution requires inspection of the switching

layer, were all taken from previous literature. The degeneracies we reveal inside the switching

layer, however, at least for the cases with a single switch, have not been considered before.

The switching layer method is related to regularization methods, which study a smoothing of

the discontinuity (as we did above for the sake of simulations only) using singular perturbation

techniques, e.g. in [17, 20, 22, 27]. To-date these typically follow the Sotomayor-Teixeira [25] ap-

proach, and restrict the class of smoothed systems studied to those with strictly linear dependence

on the switching parameter (i.e. with g ≡ 0 in (3) and Γ ≡ 0 in (9)), and therefore exclude any

role for the nonlinear terms used here to break degeneracies in the switching dynamics, a more

general description of which can be found in [13]. It must be remembered that the interest for the

discontinuous system, of course, is the limit ε → 0 itself (and εi → 0 for all i in (12)), and not, as

in singular perturbation theory, what happens under perturbation to ε nonzero.

A normal form theory for the expression of locals vector fields that consider the switching layer

is a topic for future work, as new examples of attractors and bifurcations come to light. Our

purpose here has been to provide models that show, while not being directly observable from the

form of the vector fields away from the switch, nonlinear switching terms have a role in breaking

degeneracy, and in creating dynamics that affects a system’s dynamics.

We emphasise that the terms ‘hidden bifurcation’ and ‘hidden attractor of switching’ as de-

scribed here relate to the hidden dynamics introduced in [8, 12], pertaining to dynamics hidden

inside the switching layer of a discontinuous vector field. They are not related to Leonov’s ‘hidden

attractors’ introduced in [19], which describe difficult to locate attractors whose basins of attraction

do not intersect with neighbourhoods of equilibria.
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