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The collapse of 
ows onto hypersurfaces where their vector � elds are discontinuous creates highly
robust states called sliding modes. The way 
ows exit from such sliding modes can lead to complex
and interesting behaviour about which little is currently k nown. Here we examine the basic mecha-
nisms by which a 
ow exits from sliding, either along a switch ing surface, or along the intersection
of two switching surfaces, with a view to understanding slid ing and exit when many switches are
involved. On a single switching surface, exit occurs via tangency of the 
ow to the switching surface.
Along an intersection of switches, exit can occur at a tangency with a lower codimension sliding

ow, or by a spiralling of the 
ow that exhibits geometric div ergence (in�nite steps in �nite time).
Determinacy-breaking can occur where a singularity creates a set-valued 
ow in an otherwise deter-
ministic system, and we resolve such dynamics as far as possible by blowing up the switching surface
into a switching layer. We show preliminary simulations exploring the role of dete rminacy-breaking
events as organizing centres of local and global dynamics.

Switching is found in dynamical models of wide-
ranging applications, from mechanics and geophysics to
biological growth and ecology. Switches occur between
di�erent dynamical laws whenever certain thresholds are
encountered. In this paper we consider how systems be-
have when they exit from highly constrained statesslid-
ing along those thresholds or intersections thereof. For
one or two switches we examine the basic mechanisms of
exit. In particular we show that exit from sliding is not al-
ways deterministic, and we describe the main features of
determinacy-breaking exit points. Example simulations
that illustrate the theoretical results as novel dynamical
phenomena are given.

I. INTRODUCTION

Many physical and biological systems are a mixture of
smooth steady change and sudden transitions. A tran-
sition may occur as a switching surface is crossed in
phase space. Perhaps surprisingly, and despite substan-
tial progress in local (see e.g. [2, 14]) and global (see
e.g. [10, 11]) dynamical theory with switching, we are
still only beginning to understand the potential e�ects of
switches on dynamical systems.

Consider the piecewise smooth dynamical system

_x = f (x; � ) ; � i = sign (hi (x)) ; (1)

for some i = 1 ; 2; :::; r , where f is a vector �eld with
smooth dependence on the variablesx = ( x1; :::; xn ), and
� = ( � 1; :::; � r ) is a vector of switching parameters. The
dot over x denotes di�erentiation with respect to time.
Each hi is an independent scalar function, and the sets
hi = 0 are the switching surfaces.

Early piecewise-smooth models arose in electronics and
mechanics, but are increasingly a feature of the life sci-
ences and an array of other physical problems, from su-
perconductors [4] to predator-prey strategies [5, 26]. For

example take the three systems

•x i =
X

j

kij (x j � x i ) � ci _x i � N i sign( _x i � v) ; (2)

_x i = B (z1; z2; :::; zn ) � 
 i x i ; zi = H( x i � vi ) ; (3)

_x i = r i x i (1 � x i ) �
mX

j =1

kij x j step(x i � vi ) ; (4)

over i = 1 ; 2; :::; m. The �rst represents a network of os-
cillators with displacements x i , coupled via spring con-
stants kij and damping coe�cients ci . The oscillators
have slipping speeds _x i � v relative to a surface with speed
v, resulting in Coulomb friction forces N i sign( _x i � v) with
coe�cients N i . The second system represents a genetic
regulatory network with gene product concentrationsx i ,
degradation rates 
 i , and a production rate function B.
Genes contribute to production if above a thresholdvi ,
regulated by a Hill function H [17]. The Hill function
is often approximated as a step. The third system rep-
resents logistic growth at ratesr i , of m populations x i .
These are consumed by other speciesx j at rates kij when
they exceed abundance thresholdsvi , so feeding is turned
on or o� by a Heaviside step function. The cannibal-
istic coe�cients kii are usually zero. Systems of these
forms may be used to model how microscopic dry-friction
leads to macroscale stick-slip or even earthquakes [3, 6],
or to model networks of switching in electronic, genetic,
or neural circuitry (see e.g. [15, 27]).

These are typical examples of high-dimensional sys-
tems with transverse switching surfaceshi = 0 for some
i = 1 ; 2; :::; m (with hi = _x i � v in (2) and hi = x i � vi
in (3)-(4)), across which discontinuities occur in the dif-
ferential equations. Our aim here is to show how princi-
ples learned from low-dimensional discontinuous systems
provide insight into such high-dimensional systems. We
make only preliminary steps here, studying the key fea-
tures that will form the basis for future study of local
and global phenomena, of which we give a few examples.

In general, systems like (2)-(4) are the subject of
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piecewise-smooth dynamical systems theory [10, 14, 24].
In the piecewise-smooth approach to dynamics, changes
that take place abruptly at a threshold are modelled as
discontinuities at an event or switching surface. The
event surface becomes a new topological object in the
qualitative theory of dynamical systems, with its own
associated attractivity, singularities, and bifurcations,
which comprise the growing theory of piecewise-smooth
dynamical systems [7, 10].

Entry and exit points from a switching surface (see
�gure 1 for a few examples) are of particular interest
for studying high-dimensional problems, because trajec-
tories can become constrained to one or more of the sur-
faceshi (x) = 0 as in �gure 1(i). Each entry/exit point
onto/o� of a di�erent switching surface can therefore de-
crease/increase the degrees of freedom. The only well-
studied exit points so far are exit points from sliding
via tangencies to a single switching surface (the second
exit point in �gure 1(iii)), which have been studied as
the organizing centres of limit cycle bifurcations in low-
dimensional systems [10], a study which becomes rapidly
more complex in higher dimensions [16, 28].
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FIG. 1. Examples of: (i) entry to sliding �rst on a single switch-
ing surface (\codimension one sliding"), then on the intersec-
tion of two switching surfaces (\codimension two sliding"); (ii)
deterministic exit from codimension one sliding induced byan
intersection, (iii) deterministic exit from codimension two slid-
ing to codimension one and then to `free' 
ow, both induced by
tangencies; (iv) determinacy-breaking exit induced by a double
tangency. The symbolsf �� denote vector �elds f (x ; � 1; � 1)
that apply in di�erent regions.

Exit from high codimension sliding (�gure 1(iii-iv)) has
hardly been studied as yet, though substantial steps in
this direction are starting to be made, for example in [13]
where the problem of computability of solutions at exit
points is raised in particular. Our aim here is to open
up this problem by demonstrating basic but non-trivial
behaviours induced by exit from sliding. A complete clas-
si�cation of exit points is not possible, as new topologies
of exit points will appear with each higher dimension and

each extra switching surface. Our aim here is instead to
highlight the di�erent forms that exit may take, and to
reveal their common properties and means of study.

Ideally we should seek normal forms for the exit points
we present, but there is presently no normal form theory
for systems of the kind we will study. (Even in the sim-
plest nonsmooth systems, claims of normal forms and
completeness of classi�cations have proven misleading,
see [19]). We therefore provide prototypes, orstructural
models, for the exit points currently known. It is not the
precise form of the vector �eld expressions, but the qual-
itative behaviours possible and the means to study them,
that concerns us.

An important feature of exit points is whether or
not they are deterministic. Determinacy-breaking (�g-
ure 1(iv)) occurs when a deterministic trajectory reaches
an exit point in �nite time, then generates a multi-valued

ow at the exit point, with determinism still maintained
elsewhere. This poses obvious conceptual problems: a
numerical computation may select one of many possi-
ble exit trajectories depending on the numerical method,
while an application may require more detailed model-
ing to resolve the ambiguity. We shall focus only on
the extent to which mathematics can resolve such points,
and treat all trajectories permitted by the vector �eld as
equally valid. Nevertheless, we shall see that in certain
cases the geometry of the 
ow alone favours certain tra-
jectories over others, and this is re
ected in simulations.

To create simulations at a determinacy-breaking point,
we could use an event detection method, followed by a
decision either to: 1) simulate an ensemble of possible on-
ward trajectories, or 2) introduce a criterion for selecting
between the possible values by introducing discretisation,
stochasticity, hysteresis, smoothing, or other modeling
factors. The best understood of these is regularization
by smoothing, in which the discontinuity is replaced by a
steep sigmoid transition, and for which basic results exist
describing how such systems approximate discontinuous
systems [25, 30]. Therefore when simulating examples
of exit point behaviour for illustrative purposes only, we
shall use smoothed out approximations of the discontin-
uous vector �eld as described in the text, and let the
numerical integrator choose the path through the inter-
section as a numerical experiment. Speci�cally we use
Mathematica's NDSolve, which for su�ciently high pre-
cision and accuracy goals yields repeatable results. We
then approximate any term sign(hi ) by a smooth sigmoid
function � (hi =") such that � (hi =") ! sign(hi ) as " ! 0.

We begin by setting out some preliminaries of
piecewise-smooth systems in section II. We then begin
our study of exit points. Exit from codimension one slid-
ing is discussed in section III. In section IV we begin the
study of exit from higher codimension sliding.

Exit from sliding on an intersection of multiple
switches can take place via simple tangencies as in sec-
tion IV A, via multiple tangencies whose study we in-
stigate in section IV B, or via a Zeno process as in sec-
tion IV C. The latter involves a 
ow that spirals in to-
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wards an intersection, travels along it, and spirals back
out, with a determinacy-breaking event in the middle. In
each case we de�ne a structural model for the scenario,
examine its dynamics in the switching layer, and conclude
with illustrative simulations. Some closing remarks are
made in section VI.

II. PRELIMINARIES: RESOLVING THE
DISCONTINUITY

Taking the system (1), let us assume that all of the
gradient vectors r hi are linearly independent. Then the
manifolds hi = 0 are transversal, so the number of regions
N and number of switching surfacesm is related by N =
2m (assuming the number of spatial dimensions isn �
m). The full switching surface is the zero set of the scalar
function

h(x) = h1(x)h2(x):::hm (x) ;

of which each sethi (x) = 0 is a sub-manifold. Each of
the f i 's is a vector �eld that is smooth on an open region
that extends across the local domain boundaries de�ned
by the switching surface.

Throughout this paper we will use the following coor-
dinates. At a point p where r � m switching surfaces
intersect, say the set whereh1 = h2 = ::: = hr = 0
without loss of generality, we can �nd coordinates x =
(x1; x2; :::; xn ) such that x i = hi for i = 1 ; 2; :::; r . The
switching surface in the neighbourhood ofp consists of
the hypersurfacesx1 = 0, x2 = 0, ..., xr = 0, and their in-
tersection is the setx1 = x2 = ::: = xr = 0. The compo-
nents of a vector �eld f are written as f = ( f 1; f 2; :::; f n ).

The system (1) gives a well de�ned dynamical system
in each region outside the switching surface (forh 6= 0),
but not on the switching surface h = 0. The next step is
therefore to prescribe the dynamics onh = 0.

A. Vector �eld combination at the discontinuity

The system (1) is typically (see e.g. [14, 20]) extended
across the discontinuity by letting

_x = f (x; � ) :
�

� i = sign (hi ) if hi 6= 0 ;
� i 2 [� 1; +1] if hi = 0 ; (5)

forming a di�erential inclusion which interpolates be-
tween the di�erent values f can take in the neighbour-
hood of the discontinuity. A lot can be achieved with
such a general statement, beginning with the proof that
solutions to the discontinuous system do exist [14]. What
those solutions look like, however, and how they behave,
is still an active and very open �eld of research.

The set-valued vector �eld in (5) contains vector �eld
values that are dynamically irrelevant in the sense that
the 
ow cannot follow them for any non-vanishing inter-
val of time. Those values the 
ow can follow may be

found by re-writing the vector as a canopy combination
[20] of the values off in the neighbourhood of a point on
the switching surface,

f (x; � ) =
X

u1 ;u 2 ;:::u m = �

� (u1 )
1 � (u2 )

2 :::� (um )
m f u1 u2 :::u m (x) ;(6)

using a shorthand � ( � )
i � (1 � � i )=2, and using hereon

the more convenient index notation

f u1 u2 :::u m (x) � f (x; u11; u21; :::; um 1) (7)

with each ui taking either a + or � sign corresponding
to the sign of hi . For two switching manifolds (m = 2),
the combination (6) becomes (omitting arguments)

f = 1
2 (1 + � 2)

�
1
2 (1 + � 1) f ++ + 1

2 (1 � � 1) f � + �
(8)

+ 1
2 (1 � � 2)

�
1
2 (1 + � 1) f + � + 1

2 (1 � � 1) f �� �
;

and for a single switching surface (m = 1) this reduces
to Filippov's commonly used convex combination

f (x) = 1
2 (1 + � 1) f + (x) + 1

2 (1 � � 1) f � (x) : (9)

For m = 1 the Filippov/Utkin [14, 31] criteria may then
be used to determine the existence of sliding modes on
h1 = 0. More generally to �nd � and any possible sliding
modes on the thresholdshi = 0, we need the switching
layer methods outlined as follows.

B. Switching layer and sliding

To reveal the dynamics on� i that transports the 
ow
across the discontinuity, we blow up each manifoldhi = 0
into a layer � i 2 [� 1; +1] on hi = 0. We review the main
details of the method from [21, 22] here.

The dynamics on each� i is induced by the hi compo-
nent of the 
ow, and thus given by

� 0
i = f (x; � ) � r hi (x) on hi = 0 ; (10)

where the prime denotes di�erentiation with respect to
a dummy instantaneous timescale. One way to describe
this is that _x denotes d

dt x, while � 0 denotes" d
dt � for in-

�nitesimal " > 0, and while this particular interpretation
permits singular perturbation analysis, see e.g. [22], in
the piecewise smooth context here, only the singular limit
" ! 0 concerns us. Each switching surfacex i = 0 be-
comes a switching layerf x i = 0 ; � i 2 [� 1; +1]g.

At a point where r � m switching surfaces intersect,
say whereh1 = h2 = ::: = hr = 0 and hi>r 6= 0, take
local coordinates x = ( x1; x2; :::; xn ) where eachhi =
0 coincides with a coordinate level setx i = 0 for i =
1; 2; :::; r . We then have the dynamics in the switching
layer

�
(� 0

1; :::; � 0
r ) = ( f 1(x; � ) ; :::; f r (x; � )) ;

( _xr +1 ; :::; _xn ) = ( f r +1 (x; � ); :::; f n (x; � )) : (11)
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If the fast � 0
i subsystem has equilibria, where� 0

i = 0 for
all i = 1 ; :::; r , the resulting equations

�
(0; :::; 0) = ( f 1(x; � ) ; :::; f r (x; � )) ;

( _xr +1 ; :::; _xn ) = ( f r +1 (x; � ); :::; f n (x; � )) ; (12)

describe states that evolve inside the switching surfaces
x1 = ::: = xr = 0 on the main timescale, because� 0

i = 0
implies _x i = f � r hi = 0. These are sliding modes(an
extension of Filippov's sliding modes [14, 20] forr = 1).
The values of the� i 's corresponding to sliding modes are
then given by

S(� ) :=
�

(� 1; :::; � r ) 2 [� 1; +1] r : x i = 0
& f i (x; � ) = 0 for i = 1 ; :::; r

�
: (13)

In the absence of sliding modes, when (13) has no solu-
tions, the system (11) facilitates an instantaneous transi-
tion from one boundary of � i 2 [� 1; +1] to another, and
the 
ow crosses through the switching surface.

When solutions (� 1; ::; � r ) = S(� 1; ::; � r ) do exist, they
form invariant manifolds of the switching layer system
(11), given by

M S =
�

(� 1; :::; � r ) 2 [� 1; +1] r

(xr +1 ; :::; xn ) 2 Rn � r : � = S(� )
�

(14)

on which the system obeys the sliding dynamics (12). We
call M S the sliding manifold. Examples are illustrated in
�gure 2 for one or two switches. If it exists, M S may be
comprised of many connected or disconnected branches
on which the conditions (14) hold, and on whichM S is
normally hyperbolic. The normal hyperbolicity of M S ,
as an equilibrium of the � subsystem, requires

det

�
�
�
�
@(� 0

1; :::; � 0
r )

@(� 1; :::; � r )

�
�
�
�
M S

6= 0 : (15)

Provided (14) and (15) hold then the manifold M S so
de�ned is invariant except at its boundaries. The theory
of invariant manifolds can be found for example in [18,
23], and we emphasize that in the context of singular
perturbations, the interest here is in the singular limit
(where M S is known as the critical manifold, and the
fast timescale in in�nitely fast) [22].

The boundaries ofM S are points where (14) or (15)
break down, which respectively give rise to:

1. end points: where M S passes through the bound-
ary of � i 2 [� 1; +1] for some i 2 f 1; ::; r g; or

2. turning points: where two branches ofM S meet (in
a fold or higher catastrophe) and normal hyperbol-
icity of M S is lost.

If trajectories exit from sliding they will typically do so at
boundaries ofM s given, therefore, by these conditions.

In both cases 1 and 2 above, the number of modesS(� )
changes, typically by unity in the former case (because
one root leaves the domain of existence), and by two in

(i)
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x2
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FIG. 2. Sketch showing the blow up of the switching surface into
a switching layer at simple exit points. In (i) we see a crossing
region (cr.), and an attracting sliding region (a.sl.) inside which
an invariant manifold M S exists. In (ii) we see an intersection
of two switching surfaces where crossing and attracting sliding
occur over two sections of the switching surface each. In each
�gure the lefthand portrait shows the piecewise-smooth 
owin
the (x1 ; x2) plane, the righthand portrait shows the switching
layer wherex i = 0 blows up into � i 2 [� 1; +1] , with sliding on
M S . The 
ow outside the switching surface is indicated with
single arrows, the sliding 
ow onM S is indicated with double
arrows, and the fast 
ow is indicated with �lled arrows.

the latter case (because pairs of solutions undergo fold
bifurcations); for more details see [21]. We see interplay
between these two types in the following sections. Ex-
amples of type 1 are illustrated in �gure 2 for one or two
switches.

An orbit is a piecewise-smooth continuous curve, along
which the direction of time is preserved, formed by
concatenating: solution trajectories of (5) outside the
switching surface, with solution trajectories of (11) inside
the switching layer. Solutions of (11) are themselves ei-
ther `fast' solutions of (10) that cross through the switch-
ing layer, or else are `fast' solutions of (10) that collapse
onto a sliding manifold M S , where they are concatenated
with sliding solutions of (12). (In �gure 2 only individual
trajectories, including the fast switching layer solutions
(�lled arrows) are shown to illustrate the phase portrait.
In �gure 3 later in the paper such concatenated trajec-
tories are shown, but the fast solutions are not shown.)

Orbits de�ned in this way may partially overlap, so
that multiple orbits can pass through a single point. In
an attractive sliding region, every point has a family of
distinct orbits reach it in �nite time. The converse is
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also possible: a family of distinct orbits can depart from
a point so that the 
ow through the point is set-valued
in forward time. If a 
ow becomes set-valued in forward
time at a speci�c point, we say determinacy has been
broken there.

III. EXIT FROM CODIMENSION r = 1 SLIDING

We begin by considering how orbits may exit from slid-
ing along a codimension one switching surfaceh1 = 0.

We shall not consider points inside repelling sliding re-
gions, occurring wheref + �r h1(x) > 0 and f � �r h1(x) <
0 on h1(x) = 0. The 
ow can exit from the switching sur-
face at all such points, so they do not directly give rise
to interesting dynamics. Moreover these are only the re-
verse time equivalent of attracting sliding regions (where
f + � r h1(x) < 0 and f � � r h1(x) > 0 on h1(x) = 0),
which have been well studied.

Our interest henceforth will be how trajectories are
able to exit from regions of attracting sliding, which,
since attractive regions are invariants of the 
ow (given
by M S ), can only happen at their boundaries.

In a deterministic exit there is only one possible trajec-
tory that an orbit can follow through the exit point. The
two basic forms to be discussed in the following sections
are shown in �gure 3 (i) and (iii). In (i) exit occurs at a
tangency (type 1 { endpoint), and in (iii) exit occurs at
an intersection with a second switching manifold (type 2
{ endpoint).

Multiple trajectories may be followed beyond the exit
point at a determinacy-breaking exit, and the two basic
forms to be discussed are triggered by a double tangency
as shown in �gure 3(ii), or again by an intersection as
shown in �gure 3(iv). The insets in �gures (ii) and (iv) il-
lustrate the set-valued 
ows through an exit point. These
will be described in more detail throughout section III.

A. Exit via a tangency: deterministic

The simplest kind of exit point is that represented by
�gure 3(i), namely the boundary of a sliding region on a
single switching manifold. Considering (13) forr = 1, we
see that an end point ofM S occurs whenf 1(x; � 1) = 0
is satis�ed at the boundary of the switching layer, i.e. at
� 1 = +1 or � 1 = � 1. Hence f �

1 (x; � 1) � f �
1 (x) = 0

at such a point, implying that it constitutes a tangency
between the respective vector �eldf � and the switching
manifold h1(x) = 0.

If the 
ow curves away from the switching surface at
such a tangency then the 
ow can exit from sustained
sliding at that point, and we call it a visible tangency. A
generic visible tangency is a point satisfying

0 = f +
1 <

d
dt

f +
1 or 0 = f �

1 <
d
dt

f �
1 : (16)

attracting 
sliding
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f 0 f +
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f --

f -
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exit

ex
it
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(iii)

cr.

cr.

r.sl.
a.sl.
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cr.
a.sl.

a.sl.

exit

(iv)

cr.

cr.

r.sl.

a.sl.

FIG. 3. Exit from codimension one sliding via: (i) a simple tan-
gency; (ii) a two-fold singularity; (iii-iv) a double-switch. The
switching surface is made up of regions where the 
ow is at-
tracted to the surface then slides (a.sl.), slides but is repelled
from the surface (r.sl.), or crosses (cr.). The phase portraits
indicate that in (ii) and (iv) determinacy is broken at the exit
point (the resulting set-valued 
ow is shown inset).

for a tangency from the h1 > 0 or h1 < 0 side of the
switching manifold, respectively.

The righthand sides of the switching layer system (11),
the sliding system (12), and the discontinuous system
(1), are equal precisely at points whereS(� 1) = +1 or
S(� 1) = � 1. The dynamics at a non-degenerate tan-
gency, i.e. a quadratic tangency of one 
ow only, where
only one set of the conditions (16) hold, is therefore lo-
cally very simple. The 
ow actually transitions di�eren-
tiably from sliding on the switching surface into smooth
motion outside it, and by implication, such a 
ow is de-
terministic.

Simple tangencies have been well studied. They are
interesting for their role in global dynamics, as the insti-
gators of so-calledsliding bifurcations (see [10]), whereby
limit cycles or stable/unstable manifolds lose or gain con-
nections to the switching surface. They will therefore be
of no further interest here.

A point where both conditions in (16) hold is non-
trivial, since then S(� 1) = +1 and S(� 1) = � 1 are both
solutions of (13) and (12) is then singular. This is covered
in the next section.
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B. Exit via a two-fold singularity

In a system with one switching manifold, exit from slid-
ing can happen whereS(� 1) = +1 and S(� 1) = � 1 are
simultaneously solutions of (13). This constitutes a com-
pound tangency as in �gure 3(ii), when both vector �elds
are tangent to the switching surface. The 
ow through
these compound tangencies can be set-valued in forward
(as well as backward) time, which breaks the determi-
nacy of the 
ow. The simplest example is the two-fold
singularity, illustrated in �gure 3(ii).

A tangency of either vector �eld that is non-degenerate
can be described as afold of the 
ow with respect to the
switching surface. A double-tangency point, where both
f �

1 vanish, can be described as atwo-fold if it is non-
degenerate. The non-degeneracy conditions for a fold are
@f�1 =@x1 6= 0 where f �

1 = 0 (i.e. the inequalities (16)),
and for a two-fold the conditions are that @f�1 =@x1 do not
vanish locally, and that the vectors r x1, r (@f+1 =@x1),
and r (@f�1 =@x1), are linearly independent.

The canonical form of the two-fold singularity (see [8,
14, 29]) under these conditions is

( _x1; _x2; _x3) =
�

f + = ( � x2; a1; b1) if x1 > 0 ;
f � = (+ x3; b2; a2) if x1 < 0 ; (17)

in terms of constantsbi 2 R and ai = � 1. The singularity
lies at x1 = x2 = x3 = 0, and three dimensions are
su�cient for a local analysis. The regions x2; x3 > 0 and
x2; x3 < 0 on the switching surface are attracting and
repelling sliding regions, respectively. There is a fold
along x1 = x2 = 0, which is visible if a1 < 0 (since then
•x1 = � a1 > 0), and a fold along x1 = x3 = 0, which is
visible if a2 < 0 (since then •x1 = a2 < 0). To study exit
points we are therefore interested in the case where one
or both of a1 and a2 are negative.

The dynamics of (17) have been thoroughly studied
(see [8] and references therein), we include it for com-
pleteness but shall review only the pertinent features
here.

Di�erent values of b1 and b2 give topologically di�er-
ent phase portraits. The cases which create exit points
are those in which the 
ow traverses the singularity in
�nite time, from the attractive sliding region into the re-
pelling sliding region. In all such cases, the 
ow can fol-
low an in�nite number of forward trajectories resulting in
determinacy-breaking as illustrated in �gure 4 (see [8]);
the relevant parameter regimes are listed in the caption.
The basic analysis proceeds as follows.

Filippov's convex combination, given by applying (9)
to (17), is

( _x1; _x2; _x3) = 1+ � 1
2 (� x2; a1; b1) + 1� � 1

2 (x3; b2; a2)

:= ( F1; F2; F3) ;

however this is shown in [22] to be structurally unstable
inside the switching layer. To obtain a structurally stable

visible

visible

visible

invisible

x2

x3
x1

r.sl.

r.sl.

a.sl.

a.sl.

cr.

cr.

cr.

cr.

FIG. 4. Determinacy breaking in three di�erent kinds of two-
fold. Left �gures sketch the piecewise-smooth 
ow and slid-
ing 
ow, right �gures show a single trajectory exploding into
a set-valued 
ow at the singularity. The set-value 
ow has 2
dimensions in (i) and 3 dimensions in (ii). The cases are: (i)
a1 = a2 = � 1 (visible two-fold) with b1 < 0 or b2 < 0 or
b1b2 < 1; (ii) a1a2 = � 1 (mixed two-fold) with b1 < 0 < b2 and
b1b2 < � 1 or with b1 + b2 < 0 and b1 � b2 < � 2.

system we can perturb this and write

( _x1; _x2; _x3) = ( F1; F2; F3) + (1 � � 2
1)( �; 0; 0)

:= ( f 1; f 2; f 3) ; (18)

for some small constant� . This is consistent with (17)
because the term (1� � 2

1)� vanishes for� 1 = � 1.
The switching layer system on x1 = 0, obtained by

substituting (17) into (11) for r = 1, is

(� 0
1; _x2; _x3) = ( f 1; f 2; f 3) : (19)

The � 0
1 subsystem has equilibria at� 1 = S(� 1) = ( x3 �

x2)=(x3 + x2) + O(� ), which form the sliding manifold

M S =
�

(� 1; x2; x3) 2 [� 1; +1] � R2 : (20)

� 1+ � 1
2 x2 + 1� � 1

2 x3 + � (1 � � 2
1) = 0

	
;

illustrated in �gure 5. On M S the sliding dynamics is
given by

(� 0
1; _x2; _x3) =

(0; b2x2 + a1x3; a2x2 + b1x3)
x3 + x2

+ O(� ) :

(21)

x3

x2

 
L LLLM S M S

visible-visible visible-invisible

r.sl.

a.sl.

r.sl.

a.sl.

FIG. 5. The sliding manifoldsM S inside the switching layer
for the two cases in �gure 4. The curveL is the set where the
vertical (� ) direction lies tangent to M , where the attracting
(a.sl.) and repelling (r.sl.) branches meet.
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The invariance of M S breaks down at the folds (on the
boundaries of the switching layer where� 1 = � 1), and
also inside the switching layer where (15) (forr = 1) is
violated, which simpli�es to the condition @�01

@�1
6= � 1

2 (x2+
x3) � 2�� 1. Combining this with (20), the invariance of
M S breaks down on the set

L =
�

(� 1; x2; x3) 2 M S : (22)

� 1 = 2 2� + x 3 � x 2
x 3 + x 2

= � x 3 + x 2
4� 2 [� 1; +1]

o
;

Either side of L , the two-dimensional curved surface
M S has an attracting branch in an � -neighbourhood of

x2; x3 > 0, where @�01
@�1

�
�
�
M S

< 0, and a repelling branch in

an � -neighbourhood ofx2; x3 < 0, where @�01
@�1

�
�
�
M S

> 0.

The non-hyperbolicity line L is a curve with tangent vec-
tor eL = ( 1 ; 2� (� 1 � 1); � 2� (� 1 + 1) ).

This means that the quantity � is vital. The set L
is the continuation of the two-fold singularity through
the switching layer, and the perturbation � ensures that
L is in a generic position with respect to the 
ow. If
� = 0 then L aligns precisely with the � 0

1 dummy system
(i.e. it is vertical in �gure 5), constituting a degeneracy of
in�nite codimension since L aligns with � 1 over in�nitely
many points on [� 1; +1], at which the sliding dynamics
(12) is unde�ned. We therefore take � 6= 0.

An isolated point singularity may exist along L , where
the 
ow's projection along the � 1-direction onto M S is
indeterminate, de�ned as the point where

f 1 = 0 ;
@f1
@�1

= 0 ; (f 2; f 3) �
@f1

@(x2; x3)
= 0 : (23)

In two-timescale systems like (19), such singularities have
been studied in general [32] (where they are calledfolded
singularities, an unfortunate clash of nomenclature that
we will not use further below). We can make a coordinate
transformation that straightens out L and puts the point
singularity at the origin, as derived in [22]. The switching
layer system (19) then becomes

8
<

:

y1
0 = y2 + y2

1 + O(y1y3) ;
_y2 = ~by3 + ~cy1 + O

�
y2

3 ; y1y3
�

;
_y3 = ~a + O(y3; y1) ;

(24)

which is the canonical form of the singularity [32], where

~a = f 3s ; ~b = �
�

f 2s + f 3s � 2~c
p

j� j
�

=4j� j ;

~c = ((1 � � 1s)k3s � (1 + � 1s)k2s) =2
p

j� j ;

and f 2s = l2s + k2s � 1s , f 3s = l3s + k3s � 1s , l2s =
1
2 (a1 + b2), l3s = 1

2 (b1 + a2), k2s = 1
2 (a1 � b2), k3s =

1
2 (b1 � a2), and � 1s is the solution to (23). As can be
seen from the values of these constants, the transforma-
tion to obtain the canonical form is only nonsingular if �
in (18) is non-vanishing.

The most important factor in determining the role of
such exit points is the dimension of the set-valued 
ow

through the singularity. As shown in �gure 4(i), if both
tangencies are visible, then only a single sliding trajec-
tory passes through the two-fold, and the 
ow generated
is two-dimensional. This means that a typical orbit is
unlikely to pass through the two-fold. In �gure 6(i) we
simulate an example system

f + = ( � x2; 2
5 x1 + 1

10 x2 � 1; 3
10 x2 � 1

5 x2x3 � 2
5 );

f � = ( x3; 1
5 x2x3 � 3

5 ; 2
5 x3 � 1 � x1);

(25)

with � = 1 =5, which has a two-fold at the origin formed
by two visible tangencies. This system contains a re-
injection to the neighbourhood of the two-fold, which
creates periodic or chaotic dynamics as we vary the coef-
�cients. This veri�es that, despite intricate local dynam-
ics, no trajectories pass through the two-fold singularity,
so the exit point itself does not play a role in the dynam-
ics, though it is the organizing centre of the surrounding
attractor.

If one tangency is visible and the other invisible as
shown in �gure 4(ii), a whole family of sliding trajec-
tories pass through the two-fold, generating a three-
dimensional 
ow. This is therefore a signi�cant feature in
the local 
ow. As the 
ow passes through the exit point,
its ensuing set-valuedness means that in simulations the
system is highly sensitive to perturbations of the model
itself, or the method of calculation. As an example take
the system

f + = ( � x2 + 1
10 x1; x1 � c1; x1 � 2);

f � = ( x3 + c2x1; x1 + c3; 1 � x1);
(26)

again with � = 1 =5. As in the last example, this con-
tains a re-injection to the neighbourhood of the two-fold.
For di�erent coe�cients this creates pseudo periodic or
chaotic motion that persists over long times, but in this
case the orbits pass through the exit point at the two-
fold itself, and closed attractors may not exist. Small
changes in parameters or the computational method can
then result in very di�erent quantitative behaviour due
to determinacy-breaking at the two-fold, and �gure 6(ii-
iii) shows two examples for di�erent parameters given in
the caption. In (ii) a chaotic-like motion persists for long
times (more than t = 1500 in this simulation), while in
(iii), after some time t > 400 the orbit begins evolving
along a canard trajectory that explores the repelling slid-
ing region, and on the second such excursion diverges to
in�nity.

The numerical solutions in both examples are obtained
by approximating � 1 = sign(x1) by � 1 � tanh(x1=")
with " = 10 � 7, taking an initial point ( x1; x2; x3) =
(0:4; 1; 1:4). Although the resulting simulations are
highly sensitive (including high sensitivity to step sizes,
numerical tolerances, and the choice of sigmoid function),
di�erent values result in qualitatively similar behaviour.

The implication of the singularity described by (24) ex-
isting inside the switching layer is that, at the heart of the
two-fold, lies the discontinuous limit of a two-timescale
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x1

0
0

0

5
5

-6 -3 3 6

10 x3

x2

x1

0
0

3
6

-4 -2 42

6 x3

x2

0

x1

0
0

5
8

-8 -4 84

10 x3

x2

0

visible

visible-invisible
(ii)

(i)

(iii)

FIG. 6. Three examples of attractor organised around a two-fold
singularity; examples based on those in [22]. Showing simulations
of: (i) the system (25), (ii-iii) the system (26) with (i) c1 =
6=5; c2 = 1 =10; c3 = 23=100; and (ii) c1 = 11=10; c2 =
1=20; c3 = 21=100.

singularity responsible for so-calledcanard phenomena
[32]. A canard is a trajectory that travels from an at-
tracting to a repelling branch of an invariant manifold,
in this caseM S , corresponding to traveling from the at-
tracting to repelling regions of sliding in �gure 4. This
allows us to interpret determinacy-breaking at the two-
fold singularity as the in�nite crowding of trajectories
that occurs in the singular limit of a deterministic slow-
fast system. The di�erent topologies of canards possible
may be found in [9, 22, 32].

C. Exit via an intersection: deterministic

Sliding on one switching manifold can also be termi-
nated by transversal intersection with another switching
manifold. Even in the simplest example of a codimen-
sion r = 1 sliding region, terminated by meeting a second
switching surface at a codimensionr = 2 switching inter-
section (as in �gure 3(iii-iv)), there are a huge number of
scenarios by which exit can occur. No classi�cation has
been attempted to date. Here we describe the typical be-
haviour that characterises such exit, particularly whether
it is deterministic (this section) or determinacy-breaking
(in section III D).

Consider, without loss of generality, a sustained inter-
val of sliding on x1 = 0 > x 2, terminated by a second
switching surface x2 = 0. A trajectory may exit into
one of the two regionsx1; x2 > 0 or x2 < 0 < x 1 (exit
into x1 < 0 is impossible because the 
ow is attracting
towards x1 = 0 > x 2 by assumption), or into one of the
three switching surface regionsx1 = 0 < x 2, x2 = 0 < x 1,
x2 = 0 > x 1. Provided that exit is possible into only one
of these regions atx1 = x2 = 0, the system may remain
deterministic, in the form represented by �gure 3(iii), as
we consider below. If exit is possible into more than one

such region then determinacy is broken, and we consider
that in the following section III D.

As a structural model of deterministic exit at an inter-
section, consider the piecewise-constant system

( _x1; _x2) =
�

f ++ = f �� = (1 ; 1) if x1x2 > 0;
f � + = f + � = (1 ; � 1) if x1x2 < 0; (27)

for which (8) simpli�es to

( _x1; _x2) = 1
2 (1 � � 1 + � 2 + � 1� 2; 1 + � 1 � � 2 + � 1� 2) :

Sliding occurs in the regionsx2 = 0 > x 1 and x1 = 0 >
x2, and 
ows towards the switching intersection x1 =
x2 = 0. Crossing occurs onx2 = 0 < x 1 and x1 = 0 < x 2.
The result is that all trajectories 
ow eventually into the
region x1; x2 > 0, and trajectories that slide initially and
exit at the intersection do so along a common trajectory
f x1(t); x2(t)g = f t; t g, t � 0.

A switching layer system (11) can be taken separately
on each region of the switching surface, usingr = 1 on
x2 = 0 > x 1, x2 = 0 < x 1, x1 = 0 > x 2, x1 = 0 < x 2,
and using r = 2 on the intersection x1 = x2 = 0. The
invariant manifold M S exists in the sliding regions on
the codimensionr = 1 switching surfaces. The switching
layer system at the intersection is

(� 0
1; � 0

2) = 1
2 (1 � � 1 + � 2 + � 1� 2; 1 + � 1 � � 2 + � 1� 2) ;

in which the 
ow converges to the trajectory
f � 1(� ); � 2(� )g = f �; � g, � 1 < � < +1, and the nearby

ow carries trajectories from the sliding regions onto the
exit trajectory f x1(t); x2(t)g = f t; t g, t � 0.

This is rather simple because the 
ow is single-valued.
Various other scenarios may be studied, but they gener-
ate little of interest for deeper study here. In particular
one may consider

f ++ = ( � 1; 1); f �� = (1 ; 1);
f � + = (1 ; 1); f + � = ( � 1; 1);

where trajectories slide alongx1 = 0 > x 2 into the inter-
section, and exit via sliding alongx1 = 0 < x 2, or

f ++ = (2 ; � 1); f �� = (1 ; 1);
f � + = (1 ; � 1); f + � = ( � 1; 1);

where trajectories slide alongx1 = 0 > x 2 and x2 =
0 > x 1 into the intersection, and exit via sliding along
x1 = 0 < x 2. Both cases are deterministic. An attract-
ing branch of a sliding manifoldM S exists in each sliding
region, and the di�erent branches are connected by tra-
jectories passing through the intersection in �nite time.
The analysis of these is quite straightforward, and the
steps are similar to those above.

D. Exit via a switching intersection:
determinacy-breaking

As a structural model of determinacy-breaking exit
from codimensionr = 1 sliding at a codimension r = 2
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intersection, illustrated in �gure 3(iv), consider

( _x1; _x2; _x3)=
�

f ++ = f �� = (1 ; x3 + 1 ; 0) if x1x2 > 0;
f � + = f + � = (1 ; x3 � 1; 0) if x1x2 < 0;

(28)
for jx3 j < 1. We will show that this exhibits determinacy-
breaking, but that the lack of determinacy is partially
resolved by the switching layer dynamics. The equality
between diagonally opposite vector �elds in (28) is for
economy here, and has no bearing on the results (small
constant, linear, or nonlinear terms can be added to any
of the four vector �elds without signi�cant e�ect).

The canopy combination (8) applied to (28) simpli�es
to

( _x1; _x2; _x3) = (1 ; x3 + � 1� 2; 0) (29)

where � i = sign(x i ).
Substituting into (12) with r = 1, it is easily seen that

trajectories in x1 < 0 reach the intersection in �nite time
via sliding on x2 = 0 � x1. The trajectories lying on
planes x2=x1 = x3 � 1 reach the intersection directly
without sliding. Similarly, trajectories in x1 > 0 depart
the intersection in �nite time via sliding on x2 = 0 � x1,
and trajectories on the planesx2=x1 = x3 � 1 depart
directly without sliding.

The line x1 = x2 = 0 is a determinacy-breaking sin-
gularity. From an inspection of the phase portrait out-
side the surfaces, and the sliding portrait onx1 = 0,
it appears that all trajectories in the region x3 � 1 �
x2=x1 � x3 +1 pass through the intersectionx1 = x2 = 0
(see �gure 7(i)). They form a continuum of trajecto-
ries all 
owing into and out of the intersection in �nite
time. Any point in this set with x1 < 0 is connected
via the 
ow to any point in this set with x1 > 0 with
the samex3 value. We shall have to inspect the switch-
ing layer dynamics to verify whether all of these orbits
actually exist through the intersection. Uutside the re-
gion x3 � 1 � x2=x1 � x3 + 1, at least, the system is
deterministic.

The switching layer system onx1 = 0 for x2 6= 0, given
by (11) with r = 1, is

(� 0
1; _x2; _x3) = (1 ; x3 + � 1 sign(x2); 0) ; (30)

with � 1 2 [� 1; +1]. The � 0
1 equation is constant, so this

system provides a simple transition between the surfaces
� 1 = � 1 and � 1 = +1 on the dummy (prime) timescale.

The switching layer system on x2 = 0 for x1 6= 0,
given again by (11) with r = 1 but adapted so that the
switching surface isx2 = 0, is

( _x1; � 0
2; _x3) = (1 ; x3 + � 2 sign(x1); 0) ; (31)

with � 2 2 [� 1; +1]. The � 0
2 equation has a set ofx3-

parameterized equilibria � 2 = � x3 sign(x1), which are
normally hyperbolic since @�02=@�2 = sign(x1), forming
simple planar invariant surfaces which are attracting for
x1 < 0 and repelling for x1 > 0. These are the sliding

x1

x2 x3

p

(i)

(ii)

cr.

r.sl.

 2

 1

x2

x1

M S

p

cr.

cr.

cr.

FIG. 7. Determinacy breaking at a switching intersection. (i)
shows the discontinuous system, (ii) shows the blow up system
in the plane x3 = 0 . The trajectory of any point p in x1 < 0
becomes multi-valued as it exits the intersection, identi�able as
the set x1;2 = 0 in (a) and � 1;2 2 [� 1; +1] , in (b).

manifolds

M S =
�

(x1; � 2; x3) :
x1 6= 0 ; jx3 j < 1;
� 2 = � x3 sign(x1)

�
(32)

of the dynamics on x2 = 0. On M S the system obeys
the sliding dynamics

( _x1; 0; _x3) = (1 ; x3 + � 1� 2; 0) : (33)

This gives a constant drift in the positive x1 direction on
M S inside x2 = 0, with � 2 = � x3 sign(x1).

The switching layer system on the intersectionx1 =
x2 = 0, given by (12) with r = 2, is

(� 0
1; � 0

2; _x3) = (1 ; x3 + � 2 sign(x1); 0) ; (34)

for � 1; � 2 2 [� 1; +1], which has solution trajectories sat-
isfying

� 2(� 1) = e� 2
1 =2

�
� 20e� � 2

10 =2 + x3

q
�
2 � (35)

n
Erf

h
� 1p

2

i
� Erf

h
� 10p

2

io�
;

where Erf is the standard error function [1]. The� 0
2 equa-

tion in (34) has a nullcline � 1� 2 = � x3 on which @�02
@�1

=
� 2 = � x3=� 1. The nullcline diverges and leaves the re-
gion � 1;2 2 [� 1; +1], existing only for j� 1;2j > jx3 j. The
nullcline is structurally stable with respect to the 
ow,
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having a gradient vector
�

@
@�1

; @
@�2

; @
@x3

�
� 0

2 = ( � 2; � 1; 1)

throughout � 1;2 2 [� 1; +1].
The continuation of the attracting and repelling planes

of M S (given by � 2 = � x3 in x1 7 � 1) into the region
� 1;2 2 [� 1; +1] are given from (35) by

� 2(� 1) = x3e� 2
1 =2

�
� e� 1=2 +

q
�
2 � (36)

n
Erf

h
� 1p

2

i
� Erf

h
1p
2

io�
:

This implies that the 
ow from the attracting plane of
M S curves towards negative� 2 in x3 < 0, and towards
positive � 2 in x3 > 0, thus exiting either into the region
x1; x2 > 0 in x3 < 0 or into the region x2 < 0 < x 1
in x3 > 0. In fact, upon reaching either � 1 = +1 or
� 2 = +1, the � 0

2 and � 0
1 dynamics respectively, given

by (31) and (30), drive the 
ow into the corners where
� 1 = +1 and � 2 = sign(x3).

The dynamics is illustrated in �gure 8 for x3 <
0. The splitting in the x2 direction between the at-
tracting and repelling manifolds (36) inside the inter-
section depends linearly onx3, given by � � 2(� 1) =

x3e� 2
1 =2

�
2e� 1=2 +

p
2� Erf

h
1p
2

i�
. There exists a unique

solution trajectory given by

� 1(t) = t ; � 2(t) = 0 ; x3(t) = 0 ; (37)

in the region � 2 2 [� 1; +1], valid for all t and hence
running along the � 1 coordinate axis. This is a canard
trajectory, meaning an orbit that passes from an attract-
ing invariant manifold to a repelling invariant manifold,
spending O(1) time on each. In this case the canard
passes from the attracting plane� 2 = x3 for � 1 < � 1 to
the repelling plane � 2 = x3 for � 1 > +1. There is only
one such trajectory, and it is structurally stable, because
the attracting and repelling branches of M S intersect
transversally at � 1 = � 2 = x3 = 0. Note that the exis-
tence of a single canard, rather than every trajectory on
x2 = 0 being a canard, is evident only from this switching
layer analysis, and cannot be seen by inspecting the dy-
namics outside the switching surface (�gure 7(i)) alone.

One trajectory therefore exists that passes through
the intersection and remains asymptotic to x2 = 0 as
x1 ! �1 . All trajectories that enter the intersection
are expelled via the point � 1 = +1, � 2 = sign(x3), de-
pending on the value of x3 along them. (Conversely,
all trajectories that travel along the repelling sliding re-
gion can be followed back in time to the point � 1 = � 1,
� 2 = � sign(x3), depending on their x3 values).

In the (x1; x2) plane with x3 �xed, the structural model
above shows that di�erent values of x3 give qualita-
tively di�erent dynamics, and determinacy-breaking oc-
curs only at x3 = 0. In three dimensions the di�erent
scenarios unfold to create a structurally stable singular-
ity, and at its heart, a canard trajectory (37) through the
intersection, hidden inside the switching layer.

Numerous other scenarios exhibit similar behaviour
and yield to similar analysis, consider for examplef �� =

(i) (ii)

a.sl. r.sl.

• 2

• 1

x2

x1

M S

p

canard x3

1+• 1• 2=0

• 1

• 2

M S

FIG. 8. Sketch of the switching layer system for simple exit from
a crossing of switching surfaces. In (ii) we show the layer ofthe
intersection, as well as the switching layers alongx1 = 0 (for
x2 6= 0 ) and x2 = 0 (for x1 6= 0 ), and the dynamics outside the
switching surfaces, the case shown is in a coordinate plane with
constant x3 < 0; and in (i) we show the invariant manifoldM S

inside the switching layer of the intersection pointx1 = x2 = 0 .

(1; x3 + 1 ; 0), f + � = (1 ; � 1; 0), and f � + = ( � 1; � 2; 0),
with either f ++ = (1 ; 3; 0) or f ++ = ( � 1; 2; 0), in both
of which there is similar determinacy-breaking passage
through the intersection, which can be resolved except
at a special value ofx3. In these examples there is also
re-injection of the set-valued 
ow back into the singu-
larity, resulting in complex oscillatory dynamics in the
neighbourhood of the intersection.

We shall not look in detail at further examples, but
conclude with a simulation to demonstrate the e�ect of
such a determinacy-breaking exit point. Consider the
system

0

@
_x1
_x2

_x3

1

A =

0

@
1 � � 2x2 + 1

5 � 1
x3 + � 1� 2 � c� 2

� 1
10 x3 � 1

5 x2

1

A (38)

where c is a constant in the range 0< c < 1. This pro-
vides an example of the global dynamics induced by a
local singularity of the form (28), having the same qual-
itative phase portrait near the intersection x1 = x2 = 0.

First, observe that there is little qualitative di�erence
between the phase portraits (�gure 9) of (38) for di�er-
ent values of c. The simulations below will reveal that
very di�erent dynamics is seen depending onc, due to
sensitivity in the 
ow's exit from the intersection.

In �gure 10 we simulate (38) by approximating � i =
sign(x i ) with � i � � (x i =") = tanh( x i =") for i = 1 ; 2, with
" = 10 � 4. The result is periodic or chaotic dynamics
for di�erent parameters. The 
ow enters the origin by
sliding along x1 < 0 = x2, then exits into positive x2 for
x3 > 0 and into negative x2 for x3 < 0 (this is veri�ed
from closer inspection of the simulations, not shown).
This is as predicted from the switching layer analysis
above. The result in (i) is a simple periodic orbit, and
as we varyc the period of this attractor changes rapidly,
becoming eventually the complex attractor in (ii). (In
(ii-b) trajectories are also seen that cross the half-plane
x2 = 0 < x 1, which have strayed to large enoughx3
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x2

x1

FIG. 9. The 
ow of (38) in a plane x3 = constant for small
x3 . The phase portrait does not change qualitatively outside the
switching surfacesx1x2 = 0 for di�erent values of c.
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FIG. 10. An attractor driven through an intersection exit point:
a simulation of (38) with (i) c = 3

10 and (ii) c = 2
5 . The full

three-dimensional simulation and its projection into the(x1 ; x2)
plane are shown.

that x2 = 0 is no longer a sliding region, so the 
ow
crosses through transversally). Any trajectories that pass
through x1 = 0 cross it transversally (in the positive x1
direction near the intersection, but also in the negative
x1 direction at large x3 values which allows the 
ow in (ii)
to loop around more intricately). Any trajectories that
hit the half-plane x2 = 0 > x 1 do so at small enoughx3
that they then slide along x2 = 0 into the singularity.

To verify that the dynamics observed is a result of the
singularity geometry, and not of the choice of smooth-
ing in the simulation, we can simulate the same system
for the same parameters, but approximate the switch
by di�erent sigmoid functions (we could also take dif-
ferent values of 0 < " � 1, and introduce hysteresis,
delay, or noise, with similar results). In �gure 11 we re-
peat the simulation (showing only the three-dimensional

image) with the smooth rational function � (x i =") =
(x i =")=

p
1 + ( x i =")2 in (i-ii.a), and the continuous but

non-di�erentiable ramp function � (x i =") = sign( x i ) for
jx i j > " and � (x i =") = x i =" for jx i j � " in (i-ii.b). These
demonstrate that the choice of smoothing has no signi�-
cant e�ect upon the dynamics, and is not responsible for
the complex dynamics observed.
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FIG. 11. The attractors in �gure 10 for the smooth rational (a)
and ramp (b) smoothings described in the text, with parameters
and initial conditions corresponding to those in �gure 10.

We have considered what happens when a codimen-
sion r = 1 sliding 
ow arrives either at a tangency or a
codimension r = 2 intersection. A codimension r = 1
sliding trajectory will not generically encounter an inter-
section of codimensionr � 3 (i.e. where three or more
switching manifolds intersect). This therefore completes
our study of the basic generic mechanisms for exit from
codimensionr = 1 sliding.

IV. EXIT FROM CODIMENSION TWO
SLIDING

As we add more dimensions, and more switches, phe-
nomena will occur at higher codimension that are anal-
ogous to the four kinds analysed above. For example,
trajectories sliding along an intersection with codimen-
sion r = 2 may exit to codimension r = 1 sliding by
intersection with a third switching manifold, analogous
to the cases in sections III C-III D. In the section below
we look at the less obvious scenario of how tangential exit
points extend to higher codimensions, for which the prin-
ciples above extend rather powerfully. We also consider
a new case that is introduced, that of exit by spiralling
around a codimensionr = 2 sliding region.
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A. Tangential exit from an intersection

To study exit from sliding via a simple tangency of the

ow to an intersection, take as a structural model

( _x1; _x2; _x3) =

8
><

>:

f ++ = ( x3 + 1 ; � 1; 1) if 0 < x 1; x2;
f � + = (1 ; � 1 ; 0 ) if x1 < 0 < x 2;
f + � = ( � 1 ; 1; 0 ) if x2 < 0 < x 1;
f �� = (1 ; 1 ; 0 ) if x1; x2 < 0;

(39)
whose geometry is sketched in �gure 12, forx3 > � 1.

x3<0

x3=0

x3>0

a.sl.
a.sl.

x2

x3

x1

a.sl.

cr.

FIG. 12. Sketch of the system with vector �elds (39), showing
projections of the vector �elds into three constantx3 planes, and
the sliding dynamics on three half-planes and on the intersection.

The canopy (6) of the component vector �elds f ��

gives

( _x1; _x2; _x3) = 1+ � 2
2

� 1+ � 1
2 x3 + 1 ; � 1; 1+ � 1

2

�

+ 1� � 2
2 (� � 1; 1; 0) (40)

with � 1; � 2 2 [� 1; +1], and � i = sign(x i ) for x1; x2 6= 0.
First let us �nd the dynamics of the codimension r = 1

surfaces, i.e. excluding the intersection. By applying
(12)-(13) for r = 1 on x1 = 0 and x2 = 0 separately, to
derive sliding modes if they exist, we �nd:

� x1 = 0 < x 2 is a crossing region forx3 < 1 since
f ++

1 f � +
1 = 1 + O(x3) > 0;

� x1 = 0 > x 2 is a sliding region sincef + �
1 f ��

1 =
� 1 < 0, the sliding modes satisfy� 1 = S(� 1) = 0,
giving a sliding system (� 0

1; _x2; _x3) = (0 ; 1; 0);
� x2 = 0 6= x1 is a sliding region sincef ++

2 f + �
2 =

� 1 < 0 on x2 = 0 < x 1 and f � +
2 f ��

2 = � 1 < 0 on
x2 = 0 > x 1, the sliding modes in both regions
satisfy � 2 = S(� 2) = 0, giving sliding systems
( _x1; � 0

2; _x3) = ( x3; 0; 1) and ( _x1; � 0
2; _x3) = (1 ; 0; 0)

respectively.

At the intersection x1 = x2 = 0, applying (12)-(13)
with r = 2, sliding modes exist only for x3 < 0, with

(� 1; � 2) = S(� 1; � 2) = (( x3 + 2) =(x3 � 2); 0), giving one-
dimensional dynamics (� 0

1; � 0
2; _x3) = (0 ; 0; 1)=(2 � x3).

The outcome of the sliding analysis is that trajecto-
ries in x3 < 0 are attracted onto the sliding surfaces
x1 = 0 > x 2 and x2 = 0 6= x1, and thence attracted
onto the intersection x1 = x2 = 0 where they travel to-
wards the origin. At the origin the intersection ceases
to admit sliding, and trajectories exit along the sliding
system ( _x1; � 0

2; _x3) = ( x3; 0; 1) on x2 = 0 < x 1, which
at the origin is tangent to the intersection as sketched in
�gure 12.

As for the visible tangency in section III A, here we
have a visible tangency of the sliding 
ow to the inter-
section, and the exit is deterministic. Let us brie
y anal-
yse what happens inside the switching layer in analogy
to section III A.

The switching layer system (11) onx1 = 0 is

(� 0
1; _x2; _x3) =

8
<

:

�
1
2 (1 + � 1) x3 + 1 ;

� 1; 1
2 (1 + � 1)

�
if x2 > 0 ;

(� � 1; 1; 0) if x2 < 0 ;
(41)

with � 1 2 [� 1; +1], illustrated in �gure 13. For x2 < 0
the set � 1 = 0 forms an attracting sliding manifold M S ,
whose sliding vector �eld (� 0

1; _x2; _x3) = (0 ; 1; 0), so all
trajectories 
ow into the intersection in �nite time. For
x2 > 0 there is no sliding, instead the dummy system
� 0

1 = 1 + O(x3) carries the 
ow across the switching
surface in the direction of increasingx2, at least for small
x3.

The switching layer system onx2 = 0 is

( _x1; � 0
2; _x3) =

8
<

:

�
1
2 (1 + � 2) x3 + � 2;

� � 2; 1
2 (1 + � 2)

�
if x1 > 0 ;

(1; � � 2; 0) if x1 < 0 ;
(42)

with � 2 2 [� 1; +1]. The set � 2 = 0 forms an attractive
sliding manifold M S for all x1 6= 0 and all x3, on which
the sliding vector �eld is ( _x1; � 0

2; _x3) = ( x3=2; 0; 1=2) for
x1 > 0 and (1; 0; 0) for x1 < 0. The _x1 component implies
that the sliding 
ow enters the intersection from M S for
x3 < 0, but for x3 > 0 crosses through the intersection
in the direction of increasing _x1 along M S .

The attraction of dynamics towards x1 = 0 and x2 = 0
implies that the switching layer there should possess a
sliding manifold M S for x3 < 0. The switching layer
system on the intersectionx1 = x2 = 0, given by (11)
with r = 2, is

(� 0
1; � 0

2; _x3) = 1+ � 2
2

�
1+ � 1

2 x3 + 1 ; � 1; 1+ � 1
2

�

+ 1� � 2
2 (� � 1; 1; 0) (43)

with � 1; � 2 2 [� 1; +1]. For x3 < 0 this has an attracting
sliding manifold M S consistent with (14) along the line
� 1 = 2+ x 3

2� x 3
, � 2 = 0, along which the 
ow follows the

one-dimensional system _x3 = 1 =(2 � x3). When the 
ow
enters the intersection in the regionx3 < 0 it collapses
onto M S and travels towards x3 = 0, where M S leaves
the region � 1; � 2 2 [� 1; +1]. Inside the intersection the
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a.sl. r.sl.

• 2

• 1

x2

x1

M S

a.sl. r.sl.

• 2

• 1

x2

x1

M S
M S

M S

x3<0

x3>0

M S

FIG. 13. Sketch of the switching layer dynamics of the system
(39), showing an attracting sliding manifoldM S consisting of
curves in the regionsx2 = 0 < x 1 , x2 = 0 > x 1 and x1 = 0 >
x2 , and a point insidex1 = x2 = 0 for x3 < 0 (this refers to
curves and points inR2 , which are of course surfaces and curves
respectively in the fullR3).


ow is still attracted towards the line � 2 = 0, on which
� 0

1 = 1
2 (1� � 1)+ 1

4 x3(1+ � 1) is strictly positive for x3 > 0.
This directs the 
ow out of the intersection, into sliding
on the switching surfacex2 = 0 < x 1.

As in the previous cases, one may construct many other
examples that exhibit similar behaviour, the only key fea-
tures being that: a sliding mode exists on the intersection
for some values ofx3, the codimensionr = 1 sliding 
ow
has a visible tangency to the codimensionr = 2 inter-
section, and the exit of the sliding mode corresponds to
an equilibrium exiting from the switching layer of the
intersection. The exit is deterministic.

One may build up a hierarchy of intersections and slid-
ing modes of successively higher codimensionr , and exit
points from the intersections via tangency of the codi-
mension r � 1 sliding vector �eld. By a series of such
points a trajectory may cascade down from sliding along
a high codimension intersection to lower and lower codi-
mension, eventually releasing from the switching surface
altogether. Each of these exit events should behave sim-
ilar to that above, that is, deterministically, and each
decreasing the sliding codimension by one. Coincidences
of many such events could decrease the codimension by
more than one, however, accompanied by determinacy-
breaking, as in the following section.

B. Two-fold exit from an intersection

To study a double tangency to an intersection, consider
the structural model

( _x1; _x2; _x3; _x4) =

8
>>>>>>>>><

>>>>>>>>>:

f ++ = (1 + x3; � 1; a1; b1)
if 0 < x 1; x2;

f � + = (+1 ; � 1; 0; 0 )
if x1 < 0 < x 2;

f + � = ( � 1; +1 ; 0; 0 )
if x2 < 0 < x 1;

f �� = ( d � x4; � d; b2; a2 )
if x1; x2 < 0;

(44)
in terms of constants d = � 1, ai = � 1 and bi 2 R. It is
necessary here to consider four dimensions, as multiple
tangencies to a switching intersection do not occur gener-
ically in R3. We restrict attention to a neighbourhood of
the origin jx3 j < 1; jx4 j < 1.

Figure 14 illustrates the basic dynamics in the (x1; x2)
plane in di�erent regions of (x3; x4) space. Of the
four regions of the switching surface f x1 = 0 < x 2g,
f x1 = 0 > x 2g, f x2 = 0 < x 1g, f x2 = 0 > x 1g, two ex-
hibit crossing, and two exhibit sliding. For d = � 1 the
two sliding regions are coplanar (onx1 = 0), for d = +1
they are orthogonal.

� The coplanar cased = � 1:

At x1 = 0 the 
ow crosses the switching surface,
since f ++

1 f � +
1 = 1 + x3 > 0 in x2 > 0 and

f + �
1 f ��

1 = 1 + x4 > 0 in x2 < 0.

The x2 = 0 hyperplane is an attracting sliding re-
gion for all x2 6= 0 since f ++

2 f + �
2 = � 1 < 0 in

x1 > 0 and f � +
2 f ��

2 = � 1 < 0 in x1 < 0. The
sliding modes from (13) are given byS(� 2) = 0,
and give dynamics

( _x1; _x2; _x3; _x4) =

8
><

>:

(x3; 0; a1; b1)=2
if x1 > 0 ;

(� x4; 0; b2; a2)=2
if x1 < 0 ;

(45)

on x2 = 0.

The intersection exhibits sliding for x3x4 > 0. By
(13) the sliding modes are given byS(� 1) = x 4 � x 3

x 4 + x 3

and S(� 2) = 0 (recall by (13) these must both be
inside [� 1; +1] hence they exist only for x3x4 > 0),
giving dynamics

( _x4; _x4) =
(a1x4 + b2x3; a2x3 + b1x4)

j (x3; x4)
(46)

on x1 = x2 = 0, where j (x3; x4) = 2( x3 + x4) sat-
is�es x3; x4 > 0 ) j (x3; x4) > 0 and x3; x4 < 0 )
j (x3; x4) < 0. For x3x4 < 0 the 
ow therefore
crosses through the intersection, from one sliding
region to another. There exists a singularity at
x3 = x4 = 0 where these sliding modes are unde-
�ned.
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x1

x2

 0 < x3, x4

f++

f+-

f-+

f--

r =-1: r =+1:

x3 < 0 < x4

x4 < 0 < x3

x3, x4 < 0

FIG. 14. Dynamics in the(x1 ; x2) plane. Asx3 and x4 change
sign the �elds f 00 and f �� rotate, and their directions relative
to f + � and f � + change whether the sliding vector �elds point
towards or away from the intersectionx1 = x2 = 0 .

� The orthogonal cased = +1:

On x1 = 0, for x2 > 0 the 
ow crosses the switching
surface sincef ++

1 f � +
1 = 1 + x3 > 0. For x2 < 0

we havef + �
1 f ��

1 = x4 � 1 < 0, which by (13) has
sliding modesS(� 1) = x 4

x 4 � 2 , with dynamics

( _x2; _x3; _x4) =
(� x4; b2; a2)

2 � x4
(47)

on x1 = 0 > x 2.

On x2 = 0, for x1 < 0 the 
ow crosses the switching
surface sincef � +

2 f ��
2 = 1 > 0. For x1 > 0 we

have f ++
2 f + �

2 = � 1 < 0, which by (13) has sliding
modesS(� 2) = 0, giving dynamics

( _x1; _x3; _x4) = ( x3; 0; a1; b1)=2

on x2 = 0 < x 1.

Both of these sliding regions are attracting. The
intersection exhibits sliding for x3x4 > 0, where
the sliding modes satisfyS(� 1) = 2 x4=j (x3; x4) and

S(� 2) = � 2x3=j (x3; x4), giving

( _x3; _x4) =
(a1x4 + b2x3; a2x3 + b1x4)

j (x3; x4)

on x1 = x2 = 0 < x 3x4, where j (x3; x4) =
� 4x 3 x 4

x 3 + x 4 +
p

(x 3 + x 4 )2 +4 x 3 x 4
and x3x4 > 0 )

j (x3; x4) > 0. For x3x4 < 0 the 
ow crosses
through the intersection from one sliding region to
another.

The curvature of the 
ow towards or away from the
intersection is characterised by •x1 on x2 = 0 or •x2 on
x1 = 0. Along the set x3 = 0 we have •x1 = a1 for
x2 = 0 < x 1. Along the set x4 = 0 we have •x1 =
� a2 on x2 = 0 > x 1 and •x2 = � a2 on x1 = 0 > x 2.
The result is that both tangencies are ofvisible type for
a1 = a2 = +1 (curving away from the intersection in
both sliding regions), invisible type for a1 = a2 = � 1
(curving towards the intersection in both sliding regions),
and of mixed type for a1a2 = � 1 (one curves towards and
one away from the intersection in either sliding region).
This curvature also implies, as seen in �gure 14, that
the intersection is attracting with respect to the sliding
dynamics for x3; x4 < 0, repelling for x3; x4 < 0, and the

ow crosses between sliding regions at the intersection
for x3x4 < 0.

The switching between the two sliding regions, each
of dimension three on (x1; x3; x4) or (x2; x3; x4) space,
closely mimics the switching between two regions on
(x1; x2; x3) space in the two-fold of section III B; an ex-
ample comparable to �gure 4 is sketched in �gure 15. In
fact, the sliding vector �eld on the intersection given by
(45) and (47) on (x3; x4) space, both expressible as

(� 0
1; � 0

2; _x3; _x4) /
(0; 0; b2x3 + a1x4; a2x3 + b1x4)

j (x3; x4)
;

(48)
are equivalent up to time scaling to (21), i.e. the canon-
ical form sliding vector �eld of a two-fold singularity on
the switching surfacex1 = 0 of a system in (x1; x2; x3)
space. Note we neglect the term of order� from (21)
here; we will remark on this below.

The system of sliding resulting from (44) di�ers from
the two-fold in one important aspect, the sign of the time
scalingj (x3; x4). That time scaling crucially changes the
character of the singularity at x3 = x4 = 0. The sin-
gularity for the `coplanar' case d = +1 may be called
a bridge point, forming a bridge between attracting and
repelling sliding regions, while for the `orthogonal' case
d = � 1 it may be called ajamming point, an equilibrium
that the 
ow may reach or depart in �nite time. This is
shown as follows.

The phase portraits of (48) are that of a linear equi-
librium at x3 = x4 = 0, which takes the form of a node,
focus, or saddle depending onai and bi . Because of the
time scaling this is actually a false equilibrium, and we
must consider howj (x3; x4) a�ects the dynamics nearby.
For d = +1, similar to the two-fold singularity, the time
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x3

x1,2

x1=x2=0 x4

exit via
2-fold

cr.

cr.

r.sl.

a.sl.

FIG. 15. Sketch of x3-x4 sliding dynamics. The visible-visible
case of folds is shown with a saddle-like case of sliding dynam-
ics. A complete catalogue of the possible two-dimensional slid-
ing topologies in this codimensionr = 2 surface is equivalent to
the two-dimensional sliding phase portraits for the codimension
r = 1 two-folds in [8].

scaling is positive in the attracting sliding region and
negative in the repelling sliding region. This time scal-
ing becomes zero at the origin, such that the vector �eld
remains �nite and nonzero there, permitting the 
ow to
pass in �nite time from one sliding region to another. For
d = � 1 the time scaling is strictly negative in both sliding
regions, becoming zero at the origin such that the vector
�eld remains �nite and nonzero, so if they are attracted
to/repelled from the singularity, they reach/depart it in
�nite time.

This comparison to the two-fold singularity reveals the
basic character of the singularity at the origin of the sys-
tem above. Firstly the singularity exhibits determinacy-
breaking. Secondly, the system is degenerate, and to ob-
tain structural stability requires the addition of a nonlin-
ear term (1� � 2

1)( �; 0; 0; 0) for some small� . For brevity
we refer the reader to [22] for the straightforward steps
to obtain the switching layer on the intersection for the
system above, obtaining the invariant sliding manifolds
M S that connect at x3 = x4 = 0.

More intriguingly, this opens the way to considering
k-fold singularities for k � 2. In an n-dimensional sys-
tem, at the intersection of r switching surfaces, there
will generically occur sets of dimensiond = n � k where
k � 2r codimensionr � 1 sliding 
ows are tangent to the
intersection. We present an example in section V, and
the complex dynamics that results.

C. Zeno exit from an intersection

Exit without tangency is also possible. Filippov dis-
cussed a planar piecewise constant example in [14], stat-
ing that it exhibited geometric convergence, or the Zeno
phenomenon, meaning that in�nite switches occur as the
switching intersection is reached in �nite time. (The sys-
tem is so simple yet compelling that it has no doubt
been considered elsewhere in literature this author is un-

aware of). Filippov also noted that this constituted a
form of determinacy-breaking when the intersection is
repelling. In [12] the scenario was studied for perhaps
the �rst time in three dimensions, highlighting the com-
putational problem raised by spiralling exit from an in-
tersection.

We bring together these observations here, showing
that the Zeno phenomenon continues to apply as the
Zeno set (the intersection) changes stability in a three-
dimensional system, creating �rst a codimension two slid-
ing attractor, followed by a determinacy-breaking exit.

Again in three dimensions and with two switching sur-
faces, consider the structural model

( _x1; _x2; _x3) =

8
><

>:

f ++ = ( x3 + 1 ; � 1; 1) if 0 < x 1; x2 ;
f � + = (+1 ; +1 ; 0) if x1 < 0 < x 2 ;
f + � = ( � 1 ; � 1; 0) if x2 < 0 < x 1 ;
f �� = ( � 1 ; +1 ; 0) if x1; x2 < 0

(49)
restricted to x3 > � 1. The simplicity of this has no
qualitative bearing on the results, but greatly simpli�es
the calculations.

There is no sliding on the surfacesx1 = 0 or x2 = 0
outside their intersection, as is easily shown from the
switching layer systems on the di�erent surfacesx1 = 0 6=
x2 and x2 = 0 6= x1, (or performing standard Filippov
analysis), showing that no sliding modes exist. Instead,
the 
ow spirals around the intersection x1 = x2 = 0
by crossing through the switching planes, spiralling in
towards the intersection for x3 < 0 and away from it for
x3 > 0. We then consider the intersection point itself.

The canopy combination (6) applied to (49) simpli�es
to

f =
�
� 2 + 1

4 x3(1 + � 1)(1 + � 2); � � 1; 1
4 (1 + � 1)(1 + � 2)

�
;

(50)
and the switching layer system at the intersection, given
by (11) with r = 2, is

� 0
1 = � 2 + 1

4 x3(1 + � 1)(1 + � 2) ;
� 0

2 = � � 1 ;
_x3 = 1

4 (1 + � 1)(1 + � 2) :
(51)

The dummy timescale (prime) system has equilibria at
(� 1; � 2) = (0 ; � x 3

x 3 +4 ), forming a sliding manifold M S

on which the sliding dynamics is given by _x3 = 1 =(4 +
x3). The Jacobian derivative of the equilibrium in the
(� 1; � 2) variables is

� x 3
x 3 +4 1 + 1

4 x 3

� 1 0

�
, which for x3 > � 1

has complex eigenvalues. Forx3 < 0 the eigenvalues
have negative real part, implying an attracting focus. For
x3 > 0 the eigenvalues have positive real part, implying a
repelling focus. A drift along in the positive x3 direction
remains. So if a trajectory enters the intersection in� 1 <
x3 < 0 it will spiral around in the ( � 1; � 2) coordinates
of the switching layer system, initially with decreasing
radius around (� 1; � 2) = (0 ; � x 3

x 3 +4 ) until it passes into
x3 > 0. It then begins spiralling outward until it reaches
j� 1 j = 1 or j� 2 j = 1 and then exits.
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Thus when a trajectory enters the intersection x1 =
x2 = 0 for x3 < 0, it does so with a unique value of
(� 1; � 2) lying on the set

B =
�

(� 1; � 2) 2 [� 1; +1] 2 : (� 2
1 � 1)(� 2

2 � 1) = 0
	

:

We can integrate (51) to �nd that � 1 and � 2 evolve
through the region (� 1; � 2) 2 [� 1; +1] until they again
reach the bounding boxB, at which exit from the inter-
section occurs inx3 > 0.

The dynamics inside the intersection is therefore well
de�ned, but the entry and exit trajectories in x1x2 6= 0
may not be. It is therefore the dynamics outside the
intersection that turns out to be the most interesting
here.

Take a starting point ( x1; x2; x3) = (0 ; �; � ) with � > 0
and � 1 < � < 0 at time t = 0 on one of the switch-
ing planes, and say its orbit crosses successive switch-
ing planes at times t = t1; t2; t3; t4. The map over
time t = 0 to t = t4 gives a return map on the half
plane x1 = 0 < x 2. In 0 < x 1; x2 we have _x2 = � 1
so to reach x2 = 0 takes at time t1 = � , arriving at
x1(t1) =

R�
0 (x3 + 1) dt =

R� + �
� (x3 + 1) dx3 = ( 1

2 � + � + 1) �
and x3(t1) = � + � . The next two sectors are a re
ec-
tion so we arrive at (� ( 1

2 � + � + 1) �; 0; � + � ) in time
t3 � t1 = 2( 1

2 � + � + 1) � . The last sector is a rotation to
(0; ( 1

2 � + � + 1) �; � + � ) in time t4 � t3 = ( 1
2 � + � + 1) � .
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FIG. 16. Sketch of a Zeno trajectory (bold), taking in�nitely
many steps in �nite time to spiral in towards the intersection in
x3 < 0 and out from the intersection inx3 > 0. The inward and
outward trajectories are connected by a codimensionr = 2 slid-
ing trajectory along the intersection. A simple trajectorywhich
never reaches the intersection is also shown. The switchinglayer
system, including a sliding manifoldM S with focal attraction,
is shown inset (lower right).

Thus the overall rotation map on f x1 = 0 < x 2g is

� n = (1 + � n � 1 + 1
2 � n � 1)� n � 1 ;

� n = � n � 1 + � n � 1 ;
(52)

which has an invariant

� n � 1
2 � 2

n = � n � 1 � 1
2 � 2

n � 1 = ::: = � 0 � 1
2 � 2

0 ;

implying that the map ( � n � 1; � n � 1) 7! (� n ; � n ) on x1 = 0
has trajectories lying on the parabolic contours of the
function

 (�; � ) = � � 1
2 � 2 :

Therefore an orbit that reaches a point � n = 0 does so
with � n =

p
� 2

0 � 2� 0, and can do so only if it starts on
a curve such that � 2

0 � 2� 0 > 0.
While we cannot solve the map, we can easily show

that it exhibits the Zeno phenomenon.

Proposition 1. An orbit starting at (� 0; � 0) such thatp
� 2

0 � 2� 0 > 0 and � 1 < � 0 < 0 converges to� n = 0 as
n ! 1 in �nite time

p
� 2

0 � 2� 0 � � 0.

Proof. An orbit starting at ( � 0; � 0) such thatp
� 2

0 � 2� 0 > 0 and � 1 < � 0 < 0 will hit � n = 0
when � n =

p
� 2

0 � 2� 0. Since the speed of travel of
the 
ow along the x3 direction is unity, the time taken
is � Tn = � n � � 0 =

p
� 2

0 � 2� 0 � � 0, which is clearly
�nite. We must then show that this orbit takes in�nitely
many steps, i.e. � n = 0 implies n ! 1 . Note that
� n = 0 is a �xed point of the map (52) for any � n . Then
by the � n part of (52) we have � n +1

� n
= 1 + � n + 1

2 � n ,
and using the � n part of (52) we can re-write this as
� n +1

� n
= 1 + � n + 1

2 (� n +1 � � n ) = 1 + 1
2 (� n + � n +1 ), which

is negative since � n ; � n +1 < 0. This implies that � n

is strictly decreasing towards 0, and therefore cannot
terminate at the �xed point 0 in �nitely many steps,
and thus � n asymptotes towards 0 asn ! 1 .

Conversely, an orbit starting at the intersection in � 0 >
0 takes in�nitely many steps but �nite time to exit from
the intersection via the rotation map.

Because an orbit takes in�nitely many rotations to
reach the intersection, its entry point cannot be deter-
mined uniquely, and hence, even if the exit points from
sliding can be determined from the switching layer sys-
tem, the exit trajectory can not be determined uniquely,
and the exit takes in�nitely many steps in �nite time.

We conclude with a few simulations of (49). In this
case one �nds, as predicted, that the exit point along the
intersection is very sensitive to numerical imprecision.
The simulations shown in �gure 17 replace� i = sign(x i )
with � i � � (x i =") = tanh( x i =") for i = 1 ; 2, with (i)
" = 10 � 4, (i) " = 10 � 3, (i) " = 10 � 2. Here the value
of the smoothing sti�ness " is more evident, determining
how narrow (order " ) the funnelling along the intersection
is. The results are consistent, however, as the exit points
occur at similar coordinatesx3 � 0:2.
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FIG. 17. Simulations using a tanh smoothing with" values (i)
10� 4 , (ii) 10� 3 , (iii) 10� 2 . For (i)-(ii) a magni�cation is shown
of the funnel along the intersection.

The consistency of these results is further veri�ed by
using di�erent smoothings of the sign function, taking the
rational function � (x i =") = ( x i =")=

p
1 + ( x i =")2 in (i-

ii.a), or the ramp function � (x i =") = sign( x i ) for jx i j > "
and � (x i =") = x i =" for jx i j � " in (i-ii.b). The results
for these rational and ramp smoothings are qualitatively
indistinguishable from the tanh smoothing, with some
di�erence in the thickness of the funnel visible for " =
10� 3, but with similar exit points around x3 � 0:2.

V. EXAMPLE OF COUPLED OSCILLATORS

We have so far looked at single or double tangencies
to a codimension r = 2 switching surface, as the basic
mechanisms for exit from sliding. In systems of many
dimensions with many switches, such as those suggested
in (2)-(4), many such exits may occur at higher codi-
mension intersections. A system withn dimensions and
a switching surface comprised ofr transverse manifolds
may generically exhibit exit points consisting of up to
n � r tangencies on independent switching surfaces. This
suggests that such events may tend to cluster and form
exit cascades. The conditions for this to happen require
more study, but cascades are observed to arise quite eas-
ily in models like (2)-(4), as we show here.
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FIG. 18. The attractors in �gure 17(i-ii) for the rational (a)
and ramp (b) smoothings, with the same initial conditions, for
" = 10 � 3 .

Take an example of an oscillator system similar to
those in the introduction, speci�cally

_zi = yi ;
_yi = � M �

ij yj � M �
ij zj � � (yi � v) ;

�
i = 1 ; :::; n=2;

whereM � and M � are square matrices, andn is an even
integer, and we sum over the repeated indicesj . The ma-
trix of damping coe�cients is diagonal with components
in the range M �

ij 2 [�; 2� ]. The matrix of spring coef-
�cients has an antisymmetric part and a diagonal part
with components in the rangeM �

ij 2 [� �; + � ].
The model represents a network of oscillators with dis-

placements x i and velocities yi , connected via spring-
damper couplings, with every oscillator also coupled to
some parent object. The couplings are generated ran-
domly, therefore M � and M � are random matrices (up
to symmetries). The parent slips at a constant speedv,
and each oscillator experiences a dry (Coulomb) friction
force with surface friction coe�cient unity. The system
is non-conservative due to the linear and frictional damp-
ing, and the energy input from the slipping surface.

Let x2i � 1 = zi , x2i = yi . We have n=2 switching sur-
faceshi = yi � v = 0. A trajectory crosses a switching
surface transversally when an oscillator in the system al-
ternates between left and right slipping motion. A tra-
jectory slides on a codimensionr switching surface inter-
section whenr oscillators experience frictional sticking,
so that their speeds are each �xed atyi = v.

In simulations the oscillators typically either collapse
to low codimension sliding (where most oscillators are
slipping) or else exhibit complex transitions between
higher and lower codimension sliding. One observes
many oscillators sticking and releasing in complex pat-
terns: when one oscillator slips it may trigger a cascade
of many slip events across di�erent oscillators. Each one
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corresponds to a decrease in the sliding codimensionr at
an exit point as described above.

Visualizing the dynamics directly becomes di�cult, of
course. The simulations in �gure 19 show three of the
400 dimensions, and give a fair representation of the dy-
namics. Two cases are shown (for di�erent randomly
generated matrices), one in which the system exhibits
sustained complex oscillations which continually attach
and exit from the switching manifolds (left), and one in
which all sliding ceases and the system escapes, mean-
ing that blocks change direction without sticking, and
increasingly gain speed.
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FIG. 19. Oscillator simulations for (iii) and (iv) for �gure 20,
respectively.

To view this usefully we can use the sliding codimen-
sion r . Drops in the value of r correspond to exit points.
Figure 20 shows values ofr calculated from simulations
along a trajectory over large times, for: (i) 100 oscilla-
tors, v = � 0:45, " = 0 :03, � = 3, � = 0 :2; (ii) 200
oscillators, v = � 0:2, � = 3 :5, � = 0 :2; (iii) 200 oscilla-
tors, v = � 0:2, � = 3 :5, � = 0 :22; (iv) 200 oscillators,
v = � 0:3, � = 3 :5, � = 0 :3. We model each switch as
sign(hi ) = tanh( hi =") with " = 0 :03 (and simulations do
not show qualitative dependence on" for small enough
values). In (i)-(iii), the system exhibits sustained and
complex oscillatory dynamics, with erratic increases and
decreases inr , all, however, tending to vary around an
approximate value of

p
n=2. In (iv) the oscillations even-

tually die away and all blocks escape from sliding.
A continual decrease in r corresponds to a cascade

of exit events (stick-to-slip events in mechanical terms).
The frequency of cascades of sizer is plotted in �gure 21
for each of the simulations in �gure 20, revealing a log-
arithmic distribution. This is seen whether the system
remains in highly critical state or su�ers complete even-
tual collapse. Ongoing work is examining the particular
exit points and their roles in generating such cascades.

VI. CLOSING REMARKS

We are only at the beginning of the study of exit points.
Rather than begin a classi�cation that would be limited
to low dimensions, we have focussed on dynamical phe-
nomena such as exit points and determinacy-breaking,
which form the basis for behaviour in higher dimensions
and which might have distinct implications for applica-
tions. Particularly interesting is the collapse to higher
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FIG. 20. Stick-slip events measured by sliding codimensionr .
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FIG. 21. Plot of frequency of cascade events by size. A cascade
is a sequence of drops in sliding codimensionr , the size being
the overall decrease inr . The gradients are -0.86, -0.70, -0.82,
-0.89 (for �tting we disregard the last two data points).

order sliding that forms highly critical states, and the
subsequent large scale reorganization through cascades
of exit points which, at least in the example studied here,
satisfy logarithmic size-frequency distributions.

We have analysed the basic mechanisms by which
determinacy-breaking a�ects a piecewise smooth 
ow
with one or two switches. The 
ow outside the switching
surface suggests that determinacy fails at certain points
where the 
ow is transversal to the switching thresholds.
Whereas each initial condition has a unique forward time
orbit almost everywhere in the 
ow, at the intersection
the 
ow becomes set-valued. A switching layer analysis
of the intersection is required to reveal what is happen-
ing in more detail, restoring determinacy to some extent,
but revealing sensitivity to initial conditions and a depen-
dence on parameters, which is not evident if we neglect
the `hidden dynamics' inside the switching surfaces.

Several cases studied here can be analyzed in more de-
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tail. Our focus has been on bringing out their common
features and the methods useful to study them. A sys-
tematic classi�cation remains an open problem. From
(48) in section IV A we showed that a double codimen-
sion r = 1 sliding tangency to a codimension r = 2
intersection has the same local form as the two-fold (a
double codimensionr = 0 tangency to a codimension
r = 1 switching manifold). It is to be hoped that such
results can be generalized. Particularly interesting for fu-
ture work is to tangencies of multiple codimensionr � 1

sliding 
ows to a codimension r intersection at a point,
generalizing ther = 1 and r = 2 cases studied here.
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