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Abstract. Using the singularity theory of scalar functions, we derive a classification of sliding
bifurcations in piecewise-smooth flows. These are global bifurcations which occur when distinguished
orbits become tangent to surfaces of discontinuity, called switching manifolds. The key idea of the
paper is to attribute sliding bifurcations to singularities in the manifold’s projection along the flow,
namely to points where the projection contains folds, cusps, and two-folds (saddles and bowls). From
the possible local configurations of orbits we obtain sliding bifurcations.

In this way we derive a complete classification of generic one-parameter sliding bifurcations at
a smooth codimension one switching manifold in n-dimensions for n ≥ 3. We uncover previously
unknown sliding bifurcations, all of which are catastrophic in nature. We also describe how the
method can be extended to sliding bifurcations of codimension two or higher.
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1. Introduction. Bifurcation theory for systems of ordinary differential equa-
tions describes how smooth variations of parameter values can, through topological
changes, cause sudden changes in dynamics. This paper considers the effect of dis-
continuous variation in the differential equations themselves, which give rise to the
discontinuity-induced bifurcations [6] of piecewise-smooth dynamical systems.

We will study bifurcations that affect individual orbits as a single parameter
varies. The Flowbox Theorem [23] shows that in the neighbourhood U of a point where
a flow is smooth and non-vanishing, all orbits are smoothly equivalent. We cannot,
therefore, study the global bifurcation of a distinguished orbit Γ passing through U
by studying dynamics in U alone. The same is not true if the flow is piecewise-
smooth in U with a discontinuity along a surface Σ. Then parameter variation can
lead to local changes in the intersection between Γ and Σ. If the change involves
orbits which are confined to ‘slide’ along the discontinuity then this is called a sliding
bifurcation. Provided that the discontinuity occurs along a smooth codimension one
switching manifold, we will show that all one parameter sliding bifurcations in R

n are
equivalent to just 8 cases, each of which occur generically in R

2 or R
3, and of which

only four are already known.
Piecewise-smooth systems are widespread in applications such as engineering, eco-

nomics, medicine, biology and ecology. Problems with impacts, friction, or switching
are piecewise-smooth. For recent accounts of such systems see [6, 21, 34]. The systems
we consider are expressible in the form

ẋ = f(x, t;µ) (1.1)

where x ∈ R
n is a state vector, µ ∈ R is a parameter (which may more generally be a

vector), and ẋ = dx/dt with t ∈ R. The function f : R
n+2 → R

n is piecewise-smooth,
with discontinuities occurring across a hypersurface through phase space, called the
switching manifold.

To fully define solutions of (1.1), a rule must be given to prescribe the dynamics at
the switching manifold. If the rule is to apply a map from one point on the manifold to
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another, the solution x(t) can be discontinuous, leading to hybrid or impact systems
[6]. The subject of this paper is systems where the solution x(t) remains continuous,
but can be non-unique at the manifold [10]. A local form for such systems is

ẋ = f(x;µ) =

{

f+(x;µ) if h(x) > 0,
f−(x;µ) if h(x) < 0,

(1.2)

where h(x) = 0 implicitly defines the switching manifold. Each of the vector fields f+

and f− is smooth and defined for all x. At h = 0, trajectories either cross through
the switching manifold or slide along it, see Fig. 1.1.
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Fig. 1.1. Piecewise-smooth vector fields in regions of (i) crossing, (ii) stable sliding, (iii)
unstable sliding. The sliding vector field fsl (double arrows) is a convex combination of f+ and f−.
This formalism is due to Filippov [10] and Utkin [32], and is said to define a Filippov system.

Sliding trajectories are solutions of

ẋ = f sl ≡ (1 − λ)f+ + λf−, where λ =
Lf+h

(Lf+ − Lf−)h
, (1.3)

defined on h = 0 wherever (Lf+h)(Lf−h) < 0, where Lf denotes the Lie derivative

Lf ≡ f · d
dx

along the flow of f , where d
dx

is the gradient. (Later we will also make use
of the n-th derivative Ln

f ≡ (Lf )n). The sliding vector field f sl is a convex combination

of f+ and f−, with λ defined such that f sl is always tangent to the manifold.
Definition 1.1. An orbit segment is a smooth curve which is a trajectory of

(1.2) in the regions h > 0 or h < 0. A sliding segment is a smooth curve which
is a trajectory of (1.3) on h = 0. An orbit is a continuous curve x(t) that is a
concatenation of orbit segments and sliding segments.

Definition 1.2. A topological equivalence between Filippov systems F =
{f, f sl} and F ′ = {f ′, f sl′}, is a homeomorphism on R

n that sends orbits of F to
orbits of F ′, preserving orbit segments, sliding segments, and time direction.

For more detailed definitions see [10, 20]. Note this is stronger than a definition
given in [1] because orbits, not just segments, are preserved. This is essential in the
present paper, as it respects the intersection of orbits with the switching manifold.

Orbits are then continuous, but need not be differentiable (following Filippov’s
convention [10]). Where λ < 0 or λ > 1 in (1.3) we have (Lf+h)(Lf−h) > 0, then
orbit segments either side of h = 0 can be concatenated to form an orbit that crosses
the switching manifold (Fig. 1.1(i)).

Orbit segments can also be concatenated with sliding segments. Orbits with
sliding segments are non-unique in the sense that infinitely many orbits pass through
any point in the sliding region. Sliding regions on h = 0 satisfy 0 < λ < 1, and come
in two forms. If Lf+h < 0 < Lf−h then the sliding is stable (Fig. 1.1(ii)), orbits
reach the manifold in finite time and follow the sliding vector field f sl along it. If
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Lf+h > 0 > Lf−h then the sliding is unstable (Fig. 1.1(iii)), orbits follow the sliding
vector field on the switching manifold, but also escape into h > 0 and h < 0. The
stability type can be interchanged by reversing the arrow of time. Unstable sliding,
sometimes called ‘escaping’, has historically received less attention, but will play a
vital role in what follows.

Boundaries between sliding and crossing occur where Lf+h or Lf−h vanish, im-
plying that f+ or f− in (1.2) are tangent to the switching manifold. Since Lf+h =
0 ⇒ λ = 0, and Lf−h = 0 ⇒ λ = 1, from (1.3) we have boundary conditions for f sl,

{

f sl = f+ if Lf+h = 0,
f sl = f− if Lf−h = 0.

(1.4)

A tangency is called visible or invisible depending on whether orbits locally curve away
from, or towards, the manifold, as illustrated in Fig. 1.2(i-ii). It is also possible for
sliding segments to be tangent to the sliding region’s boundary, and these similarly are
referred to as either visible or invisible as shown in Fig. 1.2(iii-iv). When a tangency
occurs in the vector field we say that an orbit there is grazing.

(i) (iii)(ii) (iv)
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tangency
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tangencytangency
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sl

f 
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Fig. 1.2. Tangencies in a piecewise-smooth system. Visible (i) and invisible (ii) tangencies
form the boundaries between sliding (shaded) and crossing (unshaded). Tangencies between the
sliding vector field and the sliding region’s boundary can also be visible (iii) or invisible (iv).

Hence a grazing orbit is a nongeneric trajectory which, under perturbation, loses
or gains points of intersection with the manifold. This leads to the observation that
orbits in Filippov systems can undergo a variety of topological changes, called sliding
bifurcations. Originally proposed in the Russian literature [9], until recently only
the cases sketched in Fig. 1.3 were known [20]. The aim of this paper is to give a
systematic classification of sliding bifurcations, and this will reveal hitherto unknown
cases where unstable sliding plays a vital role.

(i)          (ii)           (iii)         (iv)
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sliding

adding-
sliding

adding-switching-
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crossing-
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Fig. 1.3. Four sliding bifurcations: (i) grazing-sliding, (ii) crossing-sliding, (iii) switching-
sliding and (iv) adding-sliding [6]. In each case the sliding region (shaded) is stable. These have been
found, for example, in relay circuits, dry-friction oscillators, and predator-prey models [6, 7, 8, 20].

We will now define sliding bifurcations and introduce the central result of the
paper, Theorem 1.4. The different sliding bifurcations will be described in section 5.

A bifurcation occurs in a system if an arbitrarily small perturbation gives topo-
logically nonequivalent orbits according to Definition 1.2. If topological equivalence is
lost due to a change in a particular orbit’s intersection with the switching manifold,
we say it undergoes a sliding bifurcation, defined as follows.
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Definition 1.3. A distinguished orbit x(t;µ) of (1.2)-(1.3) undergoes a sliding

bifurcation at x = µ = 0, if the vector field f+(0; 0) or f−(0; 0) is tangent to the
switching manifold, and an arbitrarily small perturbation in µ gives a topologically
nonequivalent orbit. We will refer to the µ-family of orbits as an unfolding of the
sliding bifurcation.

There are three types of tangency that will feature in this paper. The simplest
is a quadratic contact between the vector field and the manifold, as in Fig. 1.2(i-ii),
called a fold. The next is a cubic contact, called a cusp, which is responsible for the
sliding tangencies shown in Fig. 1.2(iii-iv). The third is a quadratic contact to both
sides of the manifold, called a two-fold. We need consider no higher order tangencies
because of the following theorem, which we prove in section 5.7.

Theorem 1.4. A generic one-parameter sliding bifurcation in R
n for any n ≥ 3

occurs either at a fold, cusp, or two-fold.
The rest of this paper is organised as follows. We conclude the present section

with a brief discussion of what is meant by the term ‘sliding bifurcation’. In section
2, we properly define the tangencies that occur generically in Filippov systems in R

2

and R
3. In section 3 we give an explicit local form for Filippov systems as straight

vector fields either side of a curved switching manifold. This leads to the key idea
of the paper, in section 4, to derive normal forms for the manifold from singularity
theory [2, 3, 11], and then add dynamics to derive sliding bifurcations in each setting.
This is an alternative to previous uses of singularity theory in nonsmooth systems,
where normal forms have been derived for divergent diagrams [22, 28], and for vector
fields tangent to a switching manifold [30], or to a boundary [26, 33].

The main results of the paper follow in section 5, where we first derive an unfolding
around nongeneric trajectories, and use it to find a complete classification of one-
parameter sliding bifurcations. In section 5.7 we show that these form the building
blocks for all one-parameter sliding bifurcations in R

n, and some codimension two
sliding bifurcations are described in section 5.8. In the Appendix we show that our
geometric approach reproduces the normal forms for vector fields at flat switching
manifolds, which are equivalent to those provided by other authors, and thus applies
to generic Filippov systems.

1.1. What is a sliding bifurcation?. A key insight behind Theorem 1.4 is
that the topological instability constituting a sliding bifurcation is localized to the
neighbourhood of the switching manifold [8]. Consider a distinguished orbit entering
the neighbourhood U of a point on the switching manifold. The orbit is distinguished
by global conditions, but the changes it can undergo relative to the manifold, in U ,
depend only on the configurations of orbits that are possible in U . As the orbit explores
these different configurations it undergoes sliding bifurcations, and the same ones
therefore affect, for example: (i) an unstable manifold, and (ii) a periodic orbit, shown
in Fig. 1.4. Thus sliding bifurcations are local mechanisms for global bifurcations.

One way of describing this is to let x(t;µ) denote, for each µ > 0, an orbit of
(1.2)-(1.3) which is an organising centre of the global dynamics. Let this graze at
x = 0 when µ = 0. Define a map Tµ : R

n 7→ R
n that induces a map on the vector

fields f(x;µ) and f sl(x;µ), given in the neighbourhood of x = 0 by

Tµ

(

f(x; 0), f sl(x; 0)
)

= {f(x;µ), f sl(x;µ)}. (1.5)

Assume that Tµ does not induce any bifurcation of f+ or f−. Nevertheless, typically
the orbit x(t;µ) is no longer grazing for µ 6= 0, and thus has undergone a sliding
bifurcation by Definition 1.3. If we now apply the inverse map T−1

µ to the vector
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(i)

μ<0 μ=0 μ>0

(ii)

Fig. 1.4. Sliding bifurcations as a local mechanism for global bifurcations. As µ changes a
sliding segment is created in: (i) the stable manifold to a saddle, and (ii) a periodic orbit. The
topological change is the same: locally (grey box) the phase portraits for (i) and (ii) are equivalent.

field, it returns locally to the form {f(x; 0), f sl(x; 0)}, but the orbit x(t;µ) is defined
globally, so it will map to some new orbit whose local expression is x̃(t;µ) and satisfies
x̃(t; 0) = x(t; 0). The sliding bifurcation then unfolds locally as a µ-family of orbits
x̃(t;µ) in the unchanging vector field given by {f(x; 0), f sl(x; 0)}. We will use such
µ-families in an unchanging vector field to unfold the sliding bifurcations in section 5.

2. Singularities and the vector field. In this section we introduce the tan-
gencies of piecewise-smooth vector fields that are generic in R

3, as proven in [30].
Because we are interested only in tangencies between the vector field and the man-
ifold, let us assume that f+ and f− are linearly independent throughout the local
region of interest. This implies that f± 6= 0 and, from (1.3), that f sl 6= 0.

The simplest tangency is a quadratic contact between the switching manifold and
one of the vector fields f±. Without loss of generality let us choose a tangency with
f+, which occurs where Lf+h = 0, which is quadratic if L2

f+h 6= 0. Depending on

the sign of Lf+h the tangency is visible or invisible (Fig. 1.2(i-ii)), and since f− is
not tangent to h = 0 we have Lf−h 6= 0. We call a point where these conditions are
satisfied a fold. It is generic in R

n for n ≥ 2, and defined as:
Definition 2.1. At a fold: Lf+h = 0, L2

f+h 6= 0, Lf−h 6= 0, and the fold is:

1. visible if L2
f+h > 0,

2. invisible if L2
f+h < 0.

The contact between the vector field and the manifold is cubic if L2
f+h also van-

ishes and L3
f+h 6= 0. Then f+ and, by (1.4), f sl, are tangent to the set of fold points

where Lf+h = 0. The signs of L3
f+h and Lf−h determine whether the tangency of

f sl is visible or invisible (Fig. 1.2(iii-iv)). We call a point where these conditions are
satisfied a cusp, defined as:

Definition 2.2. At a cusp: Lf+h = L2
f+h = 0, L3

f+h 6= 0, Lf−h 6= 0, and the

vectors d
dx
h, d

dx
Lf+h, d

dx
L2

f+h, are linearly independent. The cusp is:

1. visible if (L3
f+h)(Lf−h) < 0,

2. invisible if (L3
f+h)(Lf−h) > 0.

The fold and cusp lie on the boundary of stable sliding if Lf−h > 0 and of unstable
sliding if Lf−h < 0 (recall Fig. 1.1 for the types of stability). If a quadratic contact
occurs between the manifold and both of the vector fields f+ and f− at the same
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point, then Lf+h = Lf−h = 0 but the second derivatives are nonzero. Thus we have
a fold with respect to both f+ and f−, each of which may be visible or invisible, and
we call such a point a two-fold, defined as:

Definition 2.3. At a two-fold: Lf+h = Lf−h = 0, L2
f±h 6= 0, and the vectors

d
dx
h, d

dx
Lf+h, d

dx
Lf−h, are linearly independent. The two-fold is:

1. visible if Lf+h > 0 and Lf−h < 0,
2. invisible if Lf+h < 0 and Lf−h > 0,
3. visible-invisible if (Lf+h)(Lf−h) > 0.

Given Theorem 1.4, the conditions in definitions 2.1-2.3 are necessary and suf-
ficient for the existence of one-parameter sliding bifurcations. To find what those
bifurcations look like, we will begin by finding an explicit local approximation for the
piecewise-smooth system.

3. Local piecewise-straightening. Having fixed f+ and f− to be linearly
independent, let us now consider them to lie along the axes of a coordinate system
x = (x1, x2, x3) in R

3, so that the vector field in (1.2) becomes simply

ẋ = f(x) =

{

f+ = (1, 0, 0) if h(x) > 0,
f− = (0, 1, 0) if h(x) < 0,

(3.1)

hence its Lie derivative is given by Lf = Lf+ ≡ ∂
∂x1

for h > 0, and Lf = Lf− ≡ ∂
∂x2

for h < 0. We can reverse time in h > 0 or h < 0 by changing the signs of f+ or f−.
We can also extend this to R

n for n > 3, by adding zeros beyond the third component.
It remains to derive typical forms of h in such a system. Letting the switching

manifold h = 0 be a general curved surface, we will relate tangencies in the system to
the manifold’s geometry. Moreover, in the Appendix we show that previous authors’
normal forms for piecewise-smooth vector fields with folds, cusps, or two-folds [10, 20,
30], are equivalent to (3.1) with appropriate forms of h which we find in section 4.

Let us now consider the form of the switching manifold. If there is a fold or
cusp at x = 0 in (3.1), then applying the Lie derivatives for (3.1) to Definitions 2.1-
2.2, we have ∂h(0)/∂x2 6= 0. Then we can find coordinates x = (x1, x2, x3) where
h(x) = x2 + V (x), given ∂V (0)/∂x2 = 0. To lowest order in x2 (for small x) then,

h(x1, x2, x3) = x2 + V (x1, x3). (3.2)

If instead there is a two-fold at x = 0, then applying the Lie derivatives for (3.1) to
Definition 2.3 shows that the coordinate axes x1 and x2 lie in the tangent plane of the
switching manifold. Thus the only nonvanishing first derivative of h is ∂h/∂x3 6= 0,
and to lowest order in x3 (for small x) we can write

h(x1, x2, x3) = x3 + V (x1, x2) (3.3)

where ∂V (0)/∂x3 = 0. In the following section we will use results from singularity
theory to find local expressions for the function V .

4. Singularity theory and the switching manifold. We now introduce some
standard results of singularity theory applied to smooth surfaces. We cover only the
ideas required for this paper, and refer the reader to [2, 3, 11] for particularly readable
accounts of the precise statements and theory behind them.

A scalar-valued function V (u, a) of a variable u ∈ R
p and a parameter a ∈ R

q,
can be characterised by locally classifying its stationary points where the gradient
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dV/du vanishes. For a function V with a nondegenerate stationary point at u = 0,
the Morse Lemma [24] states that we can find local coordinates u = (u1, u2, ..., un)
in which V (u, a) = V (u) = ± 1

2
u2

1 ± 1

2
u2

2... ± 1

2
u2

n. The set h = 0 of a function
h(u, v) = v + V (u), for v ∈ R, then has a fold singularity in the space of (u, v) when
projected along any of the coordinate axes of u. The zero set of h with a fold along
u1 is illustrated in Fig. 4.1(i), plotted in coordinates (x1, x2) = (u1, v). Folds along
u1 and u2 are illustrated in Fig. 4.1(iii)-(iv) in the space (x1, x2, x3) = (u1, u2, v).

A stationary point is degenerate if the Hessian determinant vanishes, so |d2V/du2| =
dV/du = 0. At a degenerate stationary point an invertible coordinate transformation
can typically be found to express V in a ‘normal form’, which belongs to a param-
eterised family of functions called a universal unfolding. The universal unfolding
displays the nondegenerate components making up the degeneracy over the space of
u, in which, as parameters vary, sets of nondegenerate stationary points emanate from
the degeneracies. A universal unfolding is structurally stable, that is, the pattern of
stationary points and degeneracies persist under small perturbations to the unfolding.

For a scalar function V with a degenerate stationary point dV (0)/du = d2V (0)/du2 =
0 6= d3V (0)/du3, we can find a local coordinate u = u1 such that V (u1) = 1

3
u3

1. This
is structurally unstable. The normal form of its universal unfolding is V (u1, a) =
1

3
u3

1 + au1, where a is a real parameter, so that ∂2V (0, 0)/∂u1∂a 6= 0 ensures struc-
tural stability [24]. For a function h(u, v, a) = v + V (u, a), the level sets of h have
curves of fold singularities when projected along the u1-coordinate axis in the space
of (u1, v, a), except at u1 = a = 0, where the projection has a cusp at which two folds
meet. This is illustrated in Fig. 4.1(ii) in coordinates (x1, x2, x3) = (u1, v, a).

In general, the dimension of the parameter a in V (x, a) is the smallest possible
for the unfolding to be stable, called the codimension. Only the singularities in Fig.
4.1 (of codimension 0 or 1) will feature in this paper. We discuss the role of higher
codimension singularities in sliding bifurcations in sections 5.7-5.8.

fold cusp

(iii) (iv)(i) (ii)
bowlsaddle

x1

x3 x3

x1

x1

x2x2

x3

x2

x1

x2

Fig. 4.1. Generic singularities of the function h = 0, for: (i) the fold h = x2 + 1

2
x2
1
; (ii) the

cusp h = x2 +
`

1

3
x3
1 + x3x1

´

; the two-fold, which is either (iii) a saddle h = x3 +
`

1

2
x2
1 − 1

2
x2
2

´

or

(iv) a bowl h = x3 +
`

1

2
x2
1

+ 1

2
x2
2

´

. Writing h(u, v, a) = v + V (u, a), the x-coordinates correspond
to: (i) (x1, x2) = (u1, v), (ii) (x1, x2, x3) = (u1, v, a), and (iii-iv) (x1, x2, x3) = (u1, u2, v).

These ideas are of use in dynamical systems if a problem can be reduced to con-
sidering a scalar function, for example, in a gradient dynamical system u̇ = dV (u)/du,
an unfolding V (u1, a) = 1

3
u3

1 +au1 would describe a saddle-node bifurcation [19]. The
central idea of the present paper is to exploit (3.2)-(3.3), whereby the switching mani-
fold is expressed as the zero set of a scalar function h = v+V . Then at a fold or cusp,
from (3.2), the switching manifold is given by h(x1, x2, x3) = x2 + V (x1, x3) = 0.
In the straightened vector field of (3.1) there are no dynamics in the x3 direction,
and hence x3 behaves like a parameter, so we can map (u1, v) onto the coordinates
(x1, x2) as in Fig. 4.1(i), or map (u1, v, a) onto the coordinates (x1, x2, x3) as in Fig.
4.1(ii). Transformations on the coordinates x1 only are sufficient to put V into either
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of the normal forms V = ± 1

2
x2

1 or V = 1

3
x3

1 + x3x1, since x3 can be chosen arbitrarily
because ẋ3 = 0 in (3.1). It is easily verified, by applying the Lie derivatives for (3.1),
that the straightened vector field with

h(x1, x2) = x2 ± 1

2
x2

1 (4.1)

describes a fold in the vector field consistent with Definition 2.1, and with

h(x1, x2, x3) = x2 + 1

3
x3

1 + x3x1 (4.2)

describes a cusp in the vector field consistent with Definition 2.2.
At a two-fold, according to (3.3), we can express the switching manifold as

h(x1, x2, x3) = x3 + V (x1, x2) = 0. If we simply let (u1, u2, v) = (x1, x2, x3), then the
vector field in (3.1) would lie tangent to the fold curves on h = 0 and violate the non-
degeneracy conditions in Definition 2.3. Instead we map a linear combination of u1

and u2 to x1 and x2, obtaining a general expression for V as V = c1x
2
1+c2x

2
2+c3x1x2.

We are free to choose the constants ci to give

h(x1, x2, x3) = x3 + 1

2
αx2

1 − 1

2
βx2

2 + x1x2, (4.3)

where the parameters α and β describe the alignment of the folds to the coordinate
axes, and must be nonzero. Applying the Lie derivatives for (3.1), it is easily seen
that the straightened vector field in (3.1), with V given by (4.3), describes a two-fold
consistent with Definition 2.3.

5. Sliding bifurcations. This section concerns the dynamics implied by the
local geometry. We have derived a local expression in which the vector field is straight,
(3.1), while the switching manifold is curved and specified by one of (4.1)-(4.3). In
this section we will characterise the flow by finding a surface comprised of a generic
family of orbits. The surface will be expressed implicitly as a function ψ(x) = 0, and
describes the typical shape of orbits in the piecewise-smooth flow. By considering
how the surfaces ψ = 0 and h = 0 intersect, we can study how orbits lose or gain
points of intersection with the switching manifold near grazing.

In general, if a scalar function ψ(x) in R
3 satisfies Lfψ(x) = 0, then a surface

defined by ψ(x) = 0 consists of a one-parameter family of orbits of a system ẋ = f
where f 6= 0. For (3.1), a suitable scalar function is

ψ(x) = ρ(x3) − xi + h(x) − h(x)g(x), with g =
Lf (h− xi)

Lfh
, (5.1)

where ρ is a smooth function and g is a piecewise-constant (as we show in (5.3) below).
The coordinate xi is the x component preceding V in each of the expressions of the
form h = xi + V given by (4.1)-(4.3). The surface ψ = 0 is piecewise-smooth. When
ρ = 0, it contains an orbit intersecting the origin, and therefore ψ = 0 is an unfolding
of a sliding bifurcation as defined in Definition 1.3.

The surface ψ = 0 is comprised of a family of orbits in each of the vector fields
f+ and f−, which have a common intersection on h = 0. Generically, the portions
of ψ = 0 in h > 0 and h < 0 will each be transverse to h = 0. This implies that
dψ/dx and dh/dx must be linearly independent. Then the intersection between ψ = 0
and the switching manifold h = 0 is a smooth curve xi = ρ(x3), hence ρ determines
the shape of the surface ψ = 0. We parameterize this intersection curve as x0(µ) for
µ ∈ R, and call points x = x0(µ) the impact coordinates. They are found by solving

h(x0) = 0 and ψ(x0) = 0. (5.2)
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We will use the impact coordinates x0 as initial data for orbits in the unfolding.
The piecewise-constant g must be evaluated on each side of the switching mani-

fold. On a given side, if grazing occurs then Lfxi = 0 and g = 1, otherwise we must
have Lf (h− xi) = 0 over a neighbourhood of x = 0, giving g = 0. Therefore

g =

{

1 if Lfxi = 0,
0 if Lf (h− xi) = 0,

at x = 0. (5.3)

Note that only one of the two is possible on each side of the manifold.
In the remainder of this section we make explicit the unfoldings ψ = 0 given by

(5.1). In this way we classify and unfold the one parameter sliding bifurcations that
are possible in the neighbourhood of the singularities in section 4. The reader may
find it useful also to refer to Fig. 6.1 in the Appendix, where we reproduce these
results for a flat switching manifold.

5.1. Sliding bifurcation at a visible fold: grazing case. Consider the vector
field in (3.1) with switching manifold h(x) = x2 + 1

2
x2

1 = 0 from (4.1). By Definition
2.1.1, this represents a visible fold. By setting ρ = x3 in (5.1) we obtain an unfolding
of the sliding bifurcation at a visible fold, given by ψ = 0 where

ψ(x) = x3 − x2 + h(x)Θ [−h(x)] , (5.4)

and h(x) = x2 + 1

2
x2

1,

where Θ is the unit step function Θ [h] = 1

2
(1+sgn[h]). We have simplified (5.4) using

the identity Θ [h] = 1 − Θ [−h]. This unfolding is shown in Fig. 5.1(i). We will now
describe this figure, and remind the reader that the vector field f− in h < 0 is vertical
and points toward the switching manifold (for clarity the arrows of f− are not shown
in Fig. 5.1(i)). Note that the sliding region is stable because Lf−h > 0.

Orbits cross the switching surface h = 0 where x1 > 0, and slide where x1 < 0.
Sliding orbits (double arrows) flow towards the fold (as implied by the conditions in
(1.4)), then escape into h > 0. The segments of orbits leaving the switching manifold
at the fold form a surface given by ψsl = 0, where

ψsl(x) = −x2 + h(x)Θ [−h(x)] , x1 ≥ 0. (5.5)

This is the sliding separatrix that separates orbits with sliding dynamics from those
with crossing dynamics. The solution of ψsl = 0 is simply x2 = 0 for h > 0 (the
section of horizontal plane in Fig. 5.1(i)) and x1 = 0 for h < 0, and is the nongeneric
zero level surface of (5.1) with ρ = 0, whose intersection with h = 0 is the fold.

Using (5.2), we find that impact points in the unfolding satisfy 0 = x3 + 1

2
x2

1. If
we parameterize this curve as x0(µ) = (±√−2µ, µ, µ), then µ labels a family of orbits
originating in h > 0. The nongeneric orbit at µ = 0 grazes the manifold, see Fig.
5.1(i). This implies a sliding bifurcation: for µ > 0, each orbit is a smooth trajectory
in h > 0, and for µ < 0, each orbit impacts on the curve x0(µ) = (−√−2µ, µ, µ).
We call this the grazing case of the sliding bifurcation at a visible fold. See also Fig.
6.1.1, where this is illustrated for a flat switching manifold. It describes, for instance,
grazing-sliding of a limit cycle shown in Fig. 1.3(i).

5.2. Sliding bifurcation at a visible fold: crossing case. Orbits that orig-
inate in h < 0 in the unfolding given by (5.4) behave somewhat differently, shown
in Fig. 5.1(ii). We can reparameterize the curve of impact coordinates as x0(µ) =
(µ,− 1

2
µ2,− 1

2
µ2), and consider the nongeneric orbit at µ = 0. This is transverse to the
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x2
(iv) invisible fold

x3

x1

x2

x3

x1

x2

x3

x1

(i) visible fold

     (grazing)

impact 
curve

impact 
curve

ψ=0

ψ=0

ψ=0

ψsl=0 ψsl=0

h=0

h<0

h>0

h<0

h>0

(ii) visible fold

     (crossing)

(iii) visible fold

       (catastrophic)
x2

x3

x1

ψ=0

ψ=0

h=0

h=0

h=0

Fig. 5.1. Sliding bifurcation at a fold. The switching manifold is the shaded surface h =
x2 ± 1

2
x2
1 = 0. A nongeneric orbit intersects the origin. Its unfolding is ψ = 0, with sliding

separatrix ψsl = 0 (in (i-ii) only). The sliding bifurcations are classified as: (i) at a visible fold
(grazing case), where the nongeneric orbit visibly grazes at the boundary of stable sliding; (ii) at
a visible fold (crossing case), where the nongeneric orbit crosses the manifold at the boundary of
stable sliding; (iii) at a visible fold (catastrophic case), where the nongeneric orbit splits into grazing,
crossing, and sliding solutions at the boundary of unstable sliding; (iv) at an invisible fold, where
the nongeneric orbit hits the fold transversally. Arrows can be reversed in each case to obtain the
same four phase portraits with the opposite stability of sliding.

switching manifold, but it intersects the fold from h < 0, implying a different sliding
bifurcation to section 5.1. On one side of the bifurcation, µ > 0, the orbit crosses the
manifold. On the other side, µ < 0, the orbit has a sliding segment connecting the
curve {x0(µ) : µ < 0} to the fold, and escapes the manifold on the sliding separatrix
ψsl = 0 given by (5.5). We call this the crossing case of the sliding bifurcation at a
visible fold. See Fig. 6.1.2 for its illustration at a flat switching manifold. It describes,
for instance, crossing-sliding of a limit cycle shown in Fig. 1.3(ii).

5.3. Sliding bifurcation at a visible fold: catastrophic case. If we reverse
the time direction for h < 0 in the system (3.1), so that Lf−h < 0, and keep the same
unfolding from (5.4), then orbits originating in h > 0 undergo a discontinuous change
as they pass through grazing, shown in Fig. 5.1(iii).

As for the grazing case, section 5.1, we can label orbits by parameterizing the
impact coordinates as x0(µ) = (±√−2µ, µ, µ). The nongeneric orbit at µ = 0 grazes
the manifold. When it grazes, the solution becomes non-unique, since it can remain
in h > 0 as a smooth orbit, or cross through to h < 0, or enter the unstable sliding
region; all three are shown in Fig. 5.1(iii).

For µ > 0 the orbit is smooth, lies in h > 0, and does not impact the manifold.
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For µ < 0, the orbit crosses the manifold on the curve x0(µ) = (−√−2µ, µ, µ), and
the outgoing trajectory crosses to h < 0. This is the catastrophic case of the sliding
bifurcation at a visible fold. The phase portrait is not equivalent to either the grazing
or crossing cases from section 5.1-5.2. The sliding bifurcation is catastrophic in the
sense that perturbing the grazing orbit causes a discontinuous change in its outset
from the neighbourhood of the fold, while its inset changes continuously. See Fig.
6.1.5 for its illustration at a flat switching manifold.

This sliding bifurcation describes, for instance, the catastrophic destruction of a
limit cycle by grazing-sliding. As a catastrophic event, it is qualitatively different from
the sliding bifurcations in sections 5.1-5.2, and those in 5.4-5.5 which follow, yet it
arises naturally in our classification. It has been suggested before from numerical sim-
ulations (section 8.6.1 of [6]) where it is referred to as “catastrophic grazing-sliding”.
It has since been observed in a model of a superconducting resonator [15], which to
our knowledge is the first time is has been identified in experiments.

By inspection, sections 5.1-5.3 exhaust the possible sliding bifurcations of orbits
in the unfolding given by (5.4). Reversing the arrow of time reverses the stability of
sliding but, up to time direction, all cases are equivalent to the three described above.

5.4. Sliding bifurcation at an invisible fold. Consider the system given by
taking h(x) = x2 − 1

2
x2

1 from (4.1), with the straightened vector field of (3.1). By
Definition 2.1.2 this describes an invisible fold. We treat this similarly to the visible
fold, again setting ρ = x3 in (5.1). Hence we find that an unfolding of the sliding
bifurcation at an invisible fold is given by ψ = 0, where

ψ(x) = x3 − x2 + h(x)Θ [−h(x)] , (5.6)

and h(x) = x2 − 1

2
x2

1.

This is shown in Fig. 5.1(iv). We will now describe this figure.

The sliding region on h = 0 is in x1 > 0, and sliding segments flow away from
the fold. Orbits impact the manifold on the curve x0(µ) = (µ, 1

2
µ2, 1

2
µ2), and we

can label orbits by µ. Every orbit near an invisible fold must cross the manifold and
hence has an impact coordinate. At µ = 0 a nongeneric orbit hits the fold, implying a
sliding bifurcation. This orbit hits the manifold transversally from h < 0, then slides.
For µ > 0, orbits impact the manifold from below and then slide. For µ < 0, orbits
cross the manifold into h > 0, then impact again at x1 = −µ and slide. See Fig.
6.1.3 for the illustration of this at a flat switching manifold. It describes, for example,
switching-sliding of a limit cycle shown in Fig. 1.3 (iii).

The case with unstable sliding is found by reversing time in (3.1), but by inspec-
tion, up to time reversal, no sliding bifurcations other than Fig. 5.1(iv) are possible.
So far we have shown that three of the known sliding bifurcations (grazing-sliding,
crossing-sliding and switching-sliding in Fig. 1.3) and a new one (catastrophic grazing-
sliding) take place at a fold. In the next section we show that the only other previously
known sliding bifurcation, adding-sliding in Fig. 1.3(iv), takes place at a cusp.

5.5. Sliding bifurcation at a visible cusp. Now consider the vector field in
(3.1) with the switching manifold h(x) = x2+

1

3
x3

1+x3x1 = 0 from (4.2). By Definition
2.2, this has a cusp at the origin. From (5.1), the unfolding is the surface ψ = 0 where

ψ(x) = ρ(x3) − x2 + h(x)Θ [−h(x)] , (5.7)

and h(x) = x2 + 1

3
x3

1 + x3x1,
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shown in Fig. 5.2. Solving (5.2), we find that the impact coordinates satisfy ρ(x3) =
x2 = − 1

3
x3

1 − x3x1. Hence we can parameterize the impact coordinates as

x0(µ1, µ2) = (µ1,− 1

3
µ3

1 − µ1µ2, µ2). (5.8)

Since x3 is constant along the flow, substituting ρ = − 1

3
µ3

1 − µ1µ2 into (5.7) gives

ψ(x) = 1

3
(x1 − µ1)(x

2
1 + x1µ1 + µ2

1 + 3µ2) − h(x)Θ [h(x)] . (5.9)

Because this requires two parameters, µ1 and µ2, an orbit at the cusp has a two-
parameter unfolding. This means that a one-parameter family of orbits does not
generically intersect the cusp directly from h > 0 or h < 0.

x3

x2(i) invisible cusp             (ii) visible cusp

x3

x2

x1 x1

ψsl=0

h=0 h=0

h<0 h<0

h>0h>0

Fig. 5.2. The cusp, with switching manifold h = x2 + 1

3
x3
1

+ x3x1 = 0 and sliding separatrix
ψsl = 0 given by (5.10). Sliding segments are shown with double arrows. (i) At the invisible cusp
the sliding region is h = 0, x3 < −x2

1
. (ii) At the visible cusp the sliding region is h = 0, x3 > −x2

1
.

The vector field in h < 0 is vertically upward for stable sliding; reverse arrows for unstable sliding.

Curves of fold points branch from the origin: a visible fold along x = x0(
√−µ2, µ2)

and an invisible fold along x = x0(−
√−µ2, µ2), for µ2 < 0. The separatrix between

sliding and crossing dynamics is the surface ψsl = 0 whose impact coordinates lie
along a visible fold where µ1 =

√−µ2, which is therefore given by

ψsl = 1

3
(x1 −

√−µ2)
2(x1 + 2

√−µ2) − h(x)Θ [h(x)] . (5.10)

As shown in Fig. 5.2, orbits in a stable sliding region flow towards the visible fold,
then escape the switching manifold within the sliding separatrix. By Definition 2.2
there are two cases to consider. The system in (3.1) gives an invisible cusp, since
(L3

f+h)(Lf−h) > 0. This has sliding segments only for µ2 < 0 (or x3 < 0, h = 0) and

is shown in Fig. 5.2(i). Furthermore, the sliding segment tangent to the cusp consists
of only a single point, and therefore cannot give rise to sliding bifurcations.

If we reverse the time direction in h > 0 of (3.1) so that (L3
f+h)(Lf−h) < 0, we

obtain the visible cusp as shown in Fig. 5.2(ii). In this case there is a nongeneric
sliding segment with a visible tangency to the sliding boundary at the cusp (recall
Fig. 1.2(iii) for the definition of a visible tangency). This means that a one-parameter
sliding bifurcation can occur, and its unfolding is given by the separatrix ψsl = 0
combined with sliding segments on h = 0. Since (5.10) has only one parameter, µ2,
it defines a one-parameter unfolding for the sliding bifurcation at a visible cusp.

Reversing the overall time direction, we obtain visible and invisible cusps with
unstable sliding. The phase portraits are the same as the stable cases up to time
direction, so the only distinct one-parameter sliding bifurcation at a cusp is the visible
case, Fig. 5.2(ii). This is illustrated at a flat switching manifold in Fig. 6.1.4. An
example of it is adding-sliding of a limit cycle, shown in Fig. 1.3.
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By considering the map (µ1, µ2) 7→ x0(µ1, µ2) from (5.8), we can obtain the
bifurcation diagram for sliding bifurcations near a cusp shown in Fig. 5.3. Sliding
bifurcations at a fold take place at the visible fold (V) or the invisible fold (I), and
degenerate combinations occur at the cusp. The separatrix from (5.10) impacts the
switching manifold along the curve µ2 = −µ2

1/4 (R).

cusp cusp

B

R        I         VR        I         V

A

μ1

μ2μ2

μ1

μ2=−μ1
2

μ2=− 
μ1

2

4

μ2=−μ1
2

μ2=− 
μ1

2

4

B

(i)                           (ii)

A

Fig. 5.3. Bifurcation curves in parameter space (µ1, µ2) for: (i) the invisible cusp, and (ii)
the visible cusp. Visible (V) and invisible (I) fold branches separate sliding (shaded) and crossing
(unshaded). Grazing orbits impact along R. The flow in h > 0 maps points from region A to B.

If we return to (5.7), we can obtain a typical unfolding by letting ρ(x3) = ρ1+ρ2x3,
where ρ1 and ρ2 are constants that respectively specify the height and angle, with
respect to the switching manifold, of a family of orbits parameterized by x3. Such a
surface has four topologically different forms, depending on the signs of the quantities
ρ1 and ρ1 − 1

3
ρ3
2: the unfolding contains one visible grazing orbit if ρ1 < 0 and one

invisible grazing orbit if ρ1 > 0, and three grazing orbits in total if ρ1(ρ1 − 1

3
ρ3
2) < 0.

These are shown in Fig. 5.4. They unfold the generic series of sliding bifurcations
that will be observed by one-parameter variation of an orbit near a cusp, including
all possible sliding bifurcations at the folds.

x1

x3

x2

(i) (ii) (iii) (iv)

x1

x3

ψ=0

h=0

Fig. 5.4. The family of unfoldings from (5.7), with: (i) ρ1 > 0 and ρ1 − ρ32/3 > 0, (ii) ρ1 > 0
and ρ1 − ρ3

2
/3 < 0, (iii) ρ1 < 0 and ρ1 − ρ3

2
/3 > 0, (iv) ρ1 < 0 and ρ1 − ρ3

2
/3 < 0. The intersections

h = ψ = 0 are depicted inset, and have turning points along the folds (dotted).

An example of a one-parameter unfolding is shown in Fig. 5.5, showing the same
surface unfolding orbits around a cusp whether it is visible (i-iii) or invisible (iv).

ψsl=0 ψsl=0ψsl=0

ψ=0

ψ=0

h=0
(i)          (ii)        (iii)         (iv)

Fig. 5.5. An example of the unfoldings from (5.7), with ρ1 < 0 and ρ1 < ρ3
2
/3. (i-iii) show a

visible cusp, (iv) shows an invisible cusp. These exhibit sliding bifurcations: (i-ii) at a visible cusp
(from Fig. 5.2(ii)), (iii-iv) at an invisible fold (from Fig. 5.1(iv)). Sliding orbits escape on the
separatrix ψsl = 0. Stable sliding cases are shown, simply reverse arrows for unstable sliding.
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5.6. Catastrophic sliding bifurcations at a two-fold. Up to now we have
seen four sliding bifurcations in which an orbit changes continuously, but nondiffer-
entiably, and one catastrophic case where the orbit changes discontinuously. In this
section we show that there are three further sliding bifurcations that are catastrophic
in nature, hitherto unclassified, and all originating from the two-fold.

Consider the vector field in (3.1), with the switching manifold h(x) = x3 +
1

2
αx2

1 − 1

2
βx2

2 + x1x2 = 0 from (4.3). If the Hessian determinant over x1, x2, given by
(∂2h/∂x2

1)(∂
2h/∂x2

2) − (∂2h/∂x1∂x2)
2 = −(1 + αβ), is negative then the manifold is

a saddle, if it is positive then the manifold is a bowl (similar to Fig. 5.7).
Because the two-fold consists of tangencies to both sides of the manifold, the

constant g in (5.3) is 1. Hence, by (5.1), the unfolding ψ = 0 is given by

ψ(x) = ρ(x3) − x3, (5.11)

and h(x) = x3 + 1

2
αx2

1 − 1

2
βx2

2 + x1x2.

By (5.2), impact coordinates satisfy ρ(x3) = x3 = − 1

2
αx2

1 + 1

2
βx2

2 − x1x2, and can be
parameterized as

x0(µ1, µ2) = (µ1, µ2,− 1

2
αµ2

1 + 1

2
βµ2

2 − µ1µ2). (5.12)

The folds lie along Lf+h = αµ1 +µ2 = 0 and Lf−h = µ1 − βµ2 = 0, with the signs of
the second derivatives L2

f+h = α and L2
f−h = −β respectively determining whether

they are visible or invisible. At a visible fold, orbits escape the switching manifold
and form sliding separatrices. By solving ψ = 0 so that its impact coordinates lie
along a fold, we find that the sliding separatrices are given by ψsl = 0, where

ψsl = −x3 +
1 + αβ
2αβ

{

βx2
2 if h ≥ 0,

−αx2
1 if h ≤ 0.

(5.13)

An orbit will not generically hit the two-fold from h > 0 or h < 0, since this requires
that both of the parameters µ1 and µ2 vanish. Similarly to the cusp, to find sliding
bifurcations we must consider sliding segments.

Without analyzing the sliding vector field f sl in detail, we can use its boundary
conditions, (1.4), to infer what forms are topologically possible. These conditions
state that the sliding vector field f sl, at a point along a fold, is equal to whichever
of f+ or f− is tangent the switching manifold at that point. Thus f sl = f+ where
Lf+h = αx1 + x2 = 0, and f sl = f− where Lf−h = x1 − βx2 = 0. This implies
that f sl points outwards from the stable sliding region at a visible fold, and inwards
at an invisible fold. (It does the opposite in the unstable sliding region). Then only
the sliding topologies shown in Fig. 5.6 are possible. It is a straightforward exercise
to verify this by calculating the sliding vector field explicitly using (1.3). These have
been listed before [10, 15, 30], but not considered as the source of sliding bifurcations
except for remarks made in [14].

Only the cases in Figs. 5.6 (i), (vi), and (vii) give rise to one-parameter sliding
bifurcations. These are the only cases in which a sliding segment not only hits the
two-fold, but its intersection with the switching manifold changes under perturbation.
(In Fig. 5.6(v) no sliding segments hit the two-fold, in the remaining cases any sliding
bifurcations are trivial by Definition 1.3.) The unfoldings are illustrated in Fig. 5.7,
found by combining sliding trajectories with the sliding separatrices from (5.13).

Fig. 5.7(i) depicts the sliding bifurcation at a visible two-fold. This occurs when
α, β > 0, in which case the Hessian determinant of h over x1, x2, is −(1 + αβ) < 0,
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(i) (iii)(ii) (iv)

visible two-fold invisible two-fold

(v) (vii)(vi) (viii)

visible-invisible
 two-fold

visible-invisible
 two-fold

f −

f +

f sl f 
sl

Fig. 5.6. The sliding vector field topologies at the two-folds. Shading regions are shaded. There
are two topologies at a visible two-fold (i)-(ii) where α, β < 0, two at an invisible two-fold (iii)-(iv)
where α, β < 0, and four at a visible-invisible two-fold (v)-(viii) where αβ < 0.

(i) visible-visible

     two-fold

(ii) visible-invisble

      two-fold 

     (simple case)

(iii) visible-invisble

  two-fold 

      (robust case)

x3

x1

x2

x2

x1

S+

S−

x3 S−

x3

S−

h=0
h=0

h>0

h<0

x2

x1

x3

h=0

h>0

h<0

h<0

h>0 ψsl=0

ψsl=0 ψsl=0

ψsl=0

Fig. 5.7. Catastrophic sliding bifurcations at a two-fold for: (i) the visible two-fold; (ii) the
visible-invisible two-fold (simple case); (iii) the visible-invisible two-fold (robust case). The stable
and unstable sliding regions are bounded by folds marked S+ where αx1 + x2 = 0, and S− where
x1 − βx2 = 0, at which orbits escape and form the separatrices ψsl = 0 given by (5.13). At the
two-fold singularity the solutions are non-unique, producing orbits that enter the unstable sliding
region (canards) and orbits that escape the manifold.

so the switching manifold is a saddle. If the sliding vector field has the form of Fig.
5.6(i), then a nongeneric sliding segment intersects the two-fold. At the two-fold
singularity itself the dynamics is non-unique, since both boundary conditions in (1.4)
apply there and are contradictory. Thus an orbit may escape into h > 0 or h < 0,
or enter the unstable sliding region as shown. Depending on which way we perturb
the nongeneric orbit, we find that an orbit escapes the manifold into either h > 0 or
h < 0, on the sliding separatrix ψsl given by (5.13).

Figs. 5.7(ii)-(iii) depict the two cases of the sliding bifurcation at a visible-invisible
two-fold. These can occur if αβ < 0. The switching manifold can be either a saddle
or bowl depending on the sign of the Hessian determinant of h; the figure shows bowls
with −1−αβ > 0. In both cases, a nongeneric sliding segment intersects the two-fold.
At the two-fold point the dynamics is non-unique, since orbits can either escape the
manifold or enter the unstable sliding region. Perturbing the nongeneric orbit in one
direction gives a sliding segment that intersects the visible fold, and escapes h = 0
along the sliding separatrix. Perturbing in the opposite direction leads to two possible
scenarios. Given the vector field from Fig. 5.6(vi), the orbit will remain locally on the
manifold, shown in Fig. 5.7(ii). We call this the simple case. Alternatively, given the
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vector field from Fig. 5.6(vii), there is a one-parameter family of orbits that intersects
the two-fold, shown in Fig. 5.7(iii). Here the intersection with the singularity persists
and we call this the robust case.

Sliding orbits that pass through the two-fold point are ‘canards’ as defined in [27]
– trajectories that pass from stable to unstable invariant manifolds (sliding regions).
In Figs. 5.7(i-ii), the only canard is the nongeneric orbit, while in Fig. 5.7(iii) there
is a one-parameter family of canards; hence the ‘singular’ and ‘robust’ classification.

In the neighbourhood of an invisible two-fold, given by α < 0 and β < 0, orbits
map repeatedly back onto the switching manifold. This case is interesting in its own
right and has been extensively studied in [10, 13, 29]. The unfoldings ψ = 0, given
by (5.11), form invariant surfaces around which orbits rotate until they impact and
slide. These are associated with local bifurcations studied in [16], but the invisible
two-fold does not produce any sliding bifurcations.

5.7. Completeness of the classification. A general switching manifold may
contain any number of the singularities we have studied. Their genericity, however,
means that when any singularity is perturbed it will degenerate into folds. The
sliding bifurcations are generic in the sense that any system can be perturbed to one
exhibiting only those listed in Table 5.1 below.

Sliding bifurcation: Figure:

1. at a visible fold, grazing case Fig. 5.1(i)
2. at a visible fold, crossing case Fig. 5.1(ii)
3. at an invisible fold Fig. 5.1(iv)
4. at a visible cusp Fig. 5.2(ii)
5. at a visible fold, catastrophic case Fig. 5.1(iii)
6. at a visible two-fold Fig. 5.7(i)
7. at a visible-invisible two-fold, simle case Fig. 5.7(ii)
8. at a visible-invisible two-fold, robust case Fig. 5.7(iii)

Table 5.1

The eight one-parameter sliding bifurcations. The catastrophic cases are 5-8.

To prove that this classification is complete is a rather straightforward exercise.
We consider what singularities will generically be hit (intersected) by orbits, either in-
dividually or in one-parameter families. Recall from Definition 1.1 that a generic orbit
is a concatenation of generic trajectories of (1.2) and of (1.3), and that a singularity
is a point where, without loss of generality, Lf+h = h = 0. Then we have:

Lemma 5.1. If an orbit of (1.2)-(1.3) in R
n, for n ≥ 2, hits a singularity, the

singularity is generically a fold.
Proof. This is an immediate consequence of the fact that orbits can generically

contain sliding segments, which are one dimensional curves on the switching manifold,
and the fold is the only codimension one singularity of h = 0, provided that, at the
singularity, L2

f+h(x∗) 6= 0 and Lf−h(x∗) 6= 0 (definition 2.1).

Lemma 5.2. If a one-parameter family of orbits of (1.2)-(1.3) in R
n, for n ≥ 3,

hits a singularity, the singularity is generically a fold, a cusp, or a two-fold.
Proof. From Lemma 5.1, an orbit with a sliding segment may generically hit a

fold, but will miss singularities of higher codimension. However, the intersection of a
one-parameter family of orbits with a fold is a one-dimensional curve. Since a cusp
or two-fold occurs at an isolated codimension one set in the locus of folds, it can
occur generically along such a one-dimensional intersection, and hence be hit by a
one-parameter family of orbits. Then consider a higher codimension singularity. This
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is a codimension r set in a locus of folds with r > 1. It therefore does not occur
generically in the one-dimensional intersection between a fold and a one-parameter
family of orbits. This result is independent of the number of dimensions, provided
that n ≥ 3 so the fold, cusp, and two-fold occur generically, and therefore the lemma
holds in R

n for n ≥ 3.

We therefore have the central result of this paper:

Theorem 1.4 A generic one-parameter sliding bifurcation in R
n for any n ≥ 3 is

a sliding bifurcation at a fold, a cusp, or a two-fold.

Proof. A generic one-parameter sliding bifurcation takes place at a tangency
between the vector field and the switching manifold, which corresponds to a singularity
where Lf+h = h = 0. Its unfolding is a one-parameter family of orbits, which,
by Lemma 5.2, may generically hit a fold, a cusp, or a two-fold, but not a higher
codimension singularity.

If the derivatives that define a fold, cusp, or two-fold, vanish, but the nonde-
generacy conditions given in Definitions 2.1-2.3 are violated, then the singularity they
define has a higher codimension. Higher codimension singularities can be derived from
section 4 with V taking the form of swallowtail and butterfly catastrophe manifolds
[24], or by taking intersections of folds with cusps/two-folds, and so on. Lemma 5.2
implies that for an orbit to hit these requires at least two parameters. We discuss
these briefly in the next section.

5.8. Two-parameter sliding bifurcations. Surfaces ψ = 0 of the form given
by (5.1) can also be used to describe unfoldings of higher codimension sliding bifurca-
tions. Consider the cusp or two-fold. An orbit that hits the cusp from h > 0 or h < 0
has the form 0 = 1

3
x3

1 + hΘ [h], x3 = 0 (see (5.7)). By varying the two parameters
µ1 and µ2 we obtain a two-parameter unfolding. This codimension two scenario has
been described in [17] for a visible or invisible cusp with stable sliding. Similarly, an
orbit that hits the two-fold from h > 0 or h < 0 can be reached only by control of
two parameters in the unfolding from (5.11). This has not been considered before in
the literature on sliding bifurcations. By varying x3 and either µ1 or µ2, we obtain a
two-parameter unfolding.

Also among the two-parameter sliding bifurcations are cases where a sliding seg-
ment intersects a codimension 3 singularity. We can refer to singularity theory, as in
section 4, to find that for the piecewise-straightened vector fields in (3.1), the switch-
ing manifold h = 0 can take the form of: the swallowtail h = x2+(1

4
x4

1+ 1

2
x3x

2
1+x4x1),

the lips h = x2 + (1

3
x3

1 + (x2
3 + x4)x1) or beak-to-beak h = x2 + (1

3
x3

1 − (x2
3 + x4)x1),

and the fold-cusp h = x4 +(1

3
x3

1 +x3x1 + 1

2
x2

2), where “± 1

2
x2

2” is a Morse term similar
to that which describes a fold.

In every case, two-parameter sliding bifurcations take place at singularities that
arise as subsets along the locus of folds, cusps, and two-folds. They are therefore
comprised of degenerate combinations of the eight one-parameter sliding bifurcations
introduced in section 5.

6. Concluding remarks. By considering a piecewise-straight vector field with
a curved switching manifold, we have studied the geometry that gives rise to sliding
bifurcations. We have thus found that eight sliding bifurcations can occur as one
parameter is varied in a generic Filippov system. They can be divided into two types:
the regular sliding bifurcations 1-4 in Table 5.1, in which an orbit changes continuously
and remains unique; and the catastrophic sliding bifurcations 5-8 in Table 5.1, in which
an orbit changes discontinuously, and is non-unique at the bifurcation itself.
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This paper aims to provide a foothold for a bifurcation theory of piecewise-smooth
systems that is as yet in its infancy. We have singled out the geometry of discontinuity
induced bifurcations in sliding systems, focusing on the singularities and bifurcations
that arise through loss of transversality between a vector field and a switching man-
ifold. To these fundamentals we must add bifurcations on switching manifolds that
have self-intersections or corners, and bifurcations of equilibria or invariant manifolds.
The study of these for dimension n > 2 has barely begun.

It is worth re-emphasising that sliding bifurcations are global bifurcations (Fig.
1.4). They affect global sets (limit cycles, stable manifolds, etc) that graze the switch-
ing manifold, but the bifurcation relies only on the geometry in the neighbourhood of
grazing. Global conditions give orbits in the unfolding a specific identity. A sliding
bifurcation can be viewed locally as a bifurcation of orbits with no actual bifurcation
of the underlying vector field.

The catastrophic sliding bifurcations are characterized as perturbations of orbits
that impact a boundary of unstable sliding. Interpreted as the piecewise-smooth limit
of a regularized vector field [31], the non-uniqueness of solutions at the bifurcation
can be interpreted as a cascade of orbits that penetrate the unstable sliding region.
Far from being a pathological result of nonsmoothness, they are a common feature
of real world models. They occur in singular perturbation problems such as the van
der Pol system with relation to canards and relaxation oscillations [5, 12, 18], where
the sliding vector field is comparable to the ‘reduced’ (or slow) subsystem. They have
also been proposed as the mechanism for sudden temperature oscillations observed in
superconducting resonators [15, 25], and have been shown to be generic in switched
feedback controllers [4].

A truly pathological feature of Filippov systems is the nondeterminism faced
where both vector fields are tangent to the switching manifold (the two-fold, fold-cusp,
etc). This presents an ongoing dilemma for the interpretation of piecewise-smooth
models, particularly since, in the sliding bifurcation at a visible-invisible two-fold
(Fig. 5.7(ii)), a limit cycle can jump instantly from sliding to robust nondeterministic
behaviour. The resolution is likely to lie in closer study of the sliding bifurcations at
two-folds in models of real world systems.

Appendix: Normal forms at a flat switching manifold. Given the piecewise-
constant vector field in (3.1) and normal forms for singularities of the switching man-
ifold in section 4, we now find coordinates in which the switching manifold is flat (and
the vector field is no longer straight). These are more common in the literature on
piecewise-smooth systems, and therefore useful for illustration.

Given a manifold written locally in the form h(x) = xi + V (x) as in (4.1)-(4.3),
we make the smooth transformation to coordinates y = (y1, y2, y3) in which the
switching manifold is given by yi = 0. The unfolding function (5.1) is then given
by ψ(y) = ρ(y3) + V (y) − yig(y). We now demonstrate the transformation for each
of the singularities in Definitions 2.1-2.3.

Near the fold, section 5.1, a transformation to (y1, y2, y3) = (x1, h, x3) gives

(ẏ1, ẏ2, ẏ3) =

{

(1,±y1, 0) if y2 > 0,
(0, 1, 0) if y2 < 0.

(6.1)

Sliding bifurcations at a fold in these coordinates are shown in Figs. 6.1 parts 1,2,3,5.
Near the cusp in section 5.5, a transformation to (y1, y2, y3) = (x1, h, x3) gives

(ẏ1, ẏ2, ẏ3) =

{

(1, y2
1 + y3, 0) if y2 > 0,

(0, 1, 0) if y2 < 0.
(6.2)
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The sliding bifurcation at a visible cusp is shown in Fig. 6.1.4.
Near the two-fold in section 5.6 we transform to (y1, y2, y3) = (x1, x2, γh), where

γ is a scaling constant that can take different values either side of the switching
manifold. A similar constant at the fold or cusp has no topological effect, but at the
two-fold it must be included for the sliding vector field to realise all of the topologies
in Fig. 5.6. Without loss of generality we can let γ = 1 for h > 0, and let γ = γ− for
h < 0. Then the two-fold vector field near a flat switching manifold is given by

(ẏ1, ẏ2, ẏ3) =

{

(1, 0, αy1 + y2) if y3 > 0,
(0, 1, (y1 − βy2)γ

−) if y3 < 0.
(6.3)

The sliding bifurcations at a two-fold then are shown in Fig. 6.1 parts 6-8.

y2

y3

y1

1. visible fold (grazing)

cf. Fig.5.1(i)

ψ=0
ψsl=0h=0

4. visible cusp

y
1

y
3

y
2

cf. Fig.5.2(ii)

ψsl=0
h=0

2. visible fold (crossing)

cf. Fig.5.1(ii)

ψ=0

ψ=0

ψsl=0

h=0

7. visible-invisible two-fold

  (simple)

unstable
stable

y2

y1

y3

cf. Fig.5.6(ii)

h=0 ψsl=0

h=0

8. visible-invisible two-fold

  (robust)

unstable
stable

y2

y1

y3

cf. Fig.5.6(iii)

ψsl=0

h=0

5. visible fold (catastrophic)

ψ=0

ψ=0

h=0

cf. Fig.5.1(iii)

y2

y3

y1

ψ=0

ψ=0

h=0

3. invisible fold

cf. Fig.5.1(iv)

6. visible two-fold

y3

y2

y1

unstable stable

cf. Fig.5.6(i)

ψsl=0

ψsl=0
h=0

Fig. 6.1. The eight generic one-parameter sliding bifurcations, shown in coordinates where the
switching manifold h = 0 is flat. The labels 1-8 correspond to the classification in Table 5.1. The
surface ψ = 0 is the unfolding. Sliding segments are shown with double arrows, and leave h = 0 on
the sliding separatrix ψsl = 0.

The piecewise-smooth vector fields in (6.1-6.3), are equivalent to normal forms
defined by previous authors, up to coordinate transformations that are linear in h > 0
and h < 0, and continuous at h = 0. The fold, cusp, and two-folds all appear in the
seminal work by Filippov [10], with local vector fields similar to (6.1-6.3). Normal
forms have since been derived for each of these. The cusp follows directly from the cusp
at the boundary of a manifold given in [26]. Teixeira’s normal forms for two-folds [29,
30] are obtained from (6.3) by letting (x, y, z) = (y1+α

−1y2, (y1−βy2)γ−, y3), then f+

is notated in [29, 30] as X(x, y, z) = (1, γ−, x) and f− as Y (x, y, z) = (α−1,−βγ−, y),
in terms of the parameters α, β, γ− [this excludes Teixeira’s case “a5” where the vector
fields are not everywhere transverse].

The cusp is also equivalent to the codimension one “double tangency”, studied in
planar Filippov systems in [20]. There, a parameter (called α) replaces the coordinate
y3 in (6.3) (which is valid since ẏ3 = 0). The two-folds are referred to as “collisions
of tangencies”, but in this case the vector fields are not equivalent, since the two-fold
requires at least 3 dimensions to express generically.
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