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Abstract. In multiple time-scale (singularly perturbed) dynamical s ystems,
canards are counterintuitive solutions that evolve along both attr acting and
repelling invariant manifolds. In two dimensions, canards result in periodic
oscillations whose amplitude and period grow in a highly non linear way: they are
slowly varying with respect to a control parameter, except f or an exponentially
small range of values where they grow extremely rapidly. Thi s sudden growth,
called a canard explosion , has been encountered in many applications ranging
from chemistry to neuronal dynamics, aerospace engineerin g and ecology. Canards
were initially studied using nonstandard analysis, and lat er the same results were
proved by standard techniques such as matched asymptotics, invariant manifold
theory and parameter blow-up. More recently, canard-like b ehaviour has been
linked to surfaces of discontinuity in piecewise-smooth dy namical systems.

This paper provides a new perspective on the canard phenomen on by showing
that the nonstandard analysis of canard explosions can be re cast into the
framework of piecewise-smooth dynamical systems. An expon ential coordinate
scaling is applied to a singularly perturbed system of ordin ary di�erential
equations. The scaling acts as a lens that resolves dynamics across all time-
scales. The changes of local curvature that are responsible for canard explosions
are then analyzed. Regions where di�erent time-scales domi nate are separated
by hypersurfaces, and these are pinched together to obtain a piecewise-smooth
system, in which curvature changes manifest as discontinui ty-induced bifurcations.
The method is used to classify canards in arbitrary dimensio ns, and to derive the
parameter values over which canards form either small cycle s (canards without
head) or large cycles (canards with head).
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1. Introduction

This paper revisits the geometry of dynamical systems exhibiting relaxation
oscillations. Extreme changes of 
ow curvature brought about by the presence of
di�erent time-scales are studied. After discussing previous approaches, we introduce
new methods to characterize these changes. We show that a correspondence exists
between certain singularities of current interest in two di�erent kin ds of dynamical
system: those that are singularly perturbed [18], and those that are piecewise-smooth
[9].

A system with two time-scales can typically contain regions of fast dynamics,
evolving rapidly towards lower dimensional manifolds where regimes ofslow dynamics
take over. The stability of a slow manifold depends on it being hyberbolically
attractive in its normal direction [7, 8, 18, 19]. The occurrence ofnon-hyperbolic
points leads to the separation of the fast and slow dynamics becoming indistinct.
This is well-known to generate such nontrivial behaviours as relaxation oscillations
and canard explosions [28]. The term \canard" alludes to the duck-like shape of
cycles that wrap around critical manifolds of a typically cubic form (look ahead to
�gure 2 panel 2
 ), but also to the deception they play on the mathematician by their
sudden appearance and disappearance. The explosion is a cascadeof cycle growth
that occurs in a parameter range that is exponentially small in the ratio between
time-scales (a small parameter" ), implying that it is very di�cult to observe either in
practical or numerical situations, hence it could easily be construed as a discontinuous
event. How small the time-scale ratio (" ) must be for this to occur is addressed in a
related paper [6]. In this paper we show how such a discontinuous description can be
derived, and still preserve su�cient geometry to capture the canard phenomenon in
detail.

An extreme view of a slow-fast dynamical system can be taken by expressing it
in terms of ordinary di�erential equations containing discontinuities . A vector �eld
de�nes evolution throughout phase space, but its value can jump discontinuously
across a surface called a switching manifold. In the systems we will consider, orbits can
slide along the switching manifold in a manner that approximates the slow dynamics,
while fast dynamics takes place outside the switching manifold. The conventional
description of dynamics in piecewise-smooth vector �elds was laid down by Filippov [9].
We will rederive Filippov's convention by di�erent means, de�ning it as a piecewise-
smooth union of vector �elds of the fast and slow subsystems, combined with a map
that `pinches' phase space in the neighbourhood of the critical manifold. The pinching
creates a hypersurface, the switching manifold, and the slow dynamics slides around
inside it.

The pinched system compresses the cascade of cycles in a canard explosion into a
single instant. We make a precise connection between this pinching formalism and
the methods of nonstandard analysis applied to singular perturbation theory [1].
We begin by combining pinching with the nonstandard concept of an exponential
microscope, and we show that approximations obtained by both methods are
equivalent. Furthermore, an observation from [1] allows us to makesuccessive
approximations that separate the canard explosion into two cascades { one with small
cycles (\canard without head") and one with large cycles (\canard with head") { each
of which is instantaneous in the pinched system.

We demonstrate the pinching method on a classic example of a slow-fast system,
namely the two-dimensional van der Pol oscillator [26]. We then apply pinching to a
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system with two fast variables and one slow, which allows for oscillations on the fast
time-scale observed as \bursting" oscillations. This is the classical Hindmarsh-Rose
burster [13], where a spike-adding mechanism takes place and is organised by saddle-
type canard cycles. The same mechanism can be found in other three-dimensional
bursters (such as the Morris-Lecar equations [25]) and has been recently studied from
the standpoint of invariant manifolds, in particular, slow manifolds of saddle-type and
their (un)stable manifolds [11]. We demonstrate that, by using pinching microscope,
one can understand the transition from canard cycles to spiking periodic attractors,
that is, limit cycles with one spike.

The systems we analyse can all be expressed in the form

" •x + _xf 0(x) = g(x; y; z); (1)

where " is a small positive constant, andf 0 is the x-derivative of a smooth function
f , which is a cubic polynomial in x. The function g depends onx, and on a variable

y = " _x + f (x); (2)

and may depend on a third dynamic variablez. We can then write (1) as a system of
ordinary di�erential equations,

" _x = y � f (x); (3a)

_y = g(x; y; z); (3b)

from which it is clear that, for " � 1, the dynamics will separate into a slow time-scale
t and a fast time-scalet=" . In cases where we have a third equation _z = k(x; y; z), the
dynamics of z may have either a fast or slow time-scale; the example we consider in
section 4.3 falls into the �rst category.

The paper is arranged as follows. In section 2 we introduce some classic canard
theory based on singularly perturbed systems, including the nonstandard analysis
concept of an exponential microscope. Then in section 3 a description of canards
in terms of pinched (or piecewise-smooth) vector �elds is introduced, and applied to
examples in section 4. In sections 4.1 and 4.2 we consider supercritical and subcritical
cases of the van der Pol oscillator, the latter representing an abstract form of the
Fitzugh-Nagumo equations, and in section 4.3 we apply the method todescribe the
birth of spiking via canard cycles in a three dimensional Hindmarsh-Rose model. In
section 5 we apply pinching to derive a piecewise-smooth description of non-hyperbolic
singularities and some of their related canards. Some concluding remarks are made in
section 6.

2. The classic canard example

2.1. The van der Pol equations in the Li�enard plane

Results in this section derive from the seminal paper on canards published by the
French group from Strasbourg in the early 1980's [1]. Thoughout, they consider the
equations of the van der Pol oscillator, which can be written as

" _x = y �
1
3

x3 + x; (4a)

_y = q � x; (4b)

in the Li�enard plane ( x; y) [21], with constant forcing q and singular perturbation
parameter 0< " � 1.
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The system (4) exhibits a supercritical Hopf bifurcation as q passes through
q = � 1, that is, a stable focus-type equilibrium loses stability by creation of a stable
periodic orbit. The location of the small parameter " in (4) distinguishes the nullcline
_x = 0, which we label S0 and call the critical manifold. It consists of attracting
and repelling branches,Sa and Sr , adjoined at the turning points (or folds) of S0, at
(x; y) = � (1; � 2

3 ), such that S0 = Sa [ Sr .
Let us �rst consider how the critical manifold organises the dynamics of the

system for " = 0, illustrated in �gure 1. Setting " = 0 in (4) gives a di�erential-
algebraic system consisting of the di�erential equation _y = q � x on the slow time-
scale, constrained toS0 by the algebraic equationy = x3=3� x. HenceS0 is the phase
space of this limiting problem, called the \slow subsystem" (or sometimes \reduced
system").
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Figure 1. Fast and slow subsystems of the van der Pol equation. Double a rrows
indicate a fast motion. The fold points of the critical manif old S0 correspond to
the bifurcation points of the fast dynamics; they separate t he attracting sheets
Sa of the critical manifold from the repelling sheet Sr .

To study the fast subsystem one introduces a fast time-scale� = t=" . Denoting
di�erentiation with respect to � by a prime, (4) becomes

x0 = y �
1
3

x3 + x; (5a)

y0 = "(q � x): (5b)

When " = 0, the slow variable y has its dynamics frozen, that is,y remains constant
and can be considered as a parameter. This yields a family of one-variable di�erential
equations on the fast time-scale, parametrised byy and usually referred to as the \fast
subsystem" (or sometimes \layer problem"). The full system with " = 0 is piecewise-
smooth, with a switch occurring between the fast and slow subsystems. From (5a)
we observe that the (y-parameterized) equilibria of the fast subsystem belong to none
other than the critical manifold S0, being stable onSa and unstable onSr (indicated
by the �lled and un�lled disks in �gure 1).

The aim in this paper, as in singular perturbation theory, is to build fro m this
insight on the limiting case " = 0 to study what happens when " is small but nonzero.
Here we recount the main results, summarized in �gure 2, which shows a simulation
of (4) for " = 5 � 10� 3. If an initial condition is taken a distance of O(1) away
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from the critical manifold S0, the solution of the van der Pol equation �rst evolves
on a fast time-scale, almost horizontally, until it reaches an"-neighbourhood of one
of the attracting sheets Sa. This �rst epoch is well captured by the fast subsystem
of horizontal �bres in �gure 1. Once in the neighbourhood of Sa, where _x � 0, the
slow subsystem begins to dominate the dynamics and the orbit movesslowly, close to
Sa . The sole event that can end this slow epoch is a loss of normal stability of the
attracting sheet Sa of the critical manifold. This corresponds to a bifurcation point
of the fast subsystem, generically a saddle-node bifurcation, andtakes place at either
of the folds in �gure 1.
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Figure 2. Canard explosion in the van der Pol system. The central panel (a)
shows the bifurcation diagram of this system as a function of the parameter q
(L 2 -norm jj � jj of the limit cycle on the upper branch, and equilibria along t he
lower branch, unstable on the dashed part to the left of HB ). The quasi-vertical
part of the branch of limit cycles corresponds to the canard e xplosion. Five dots
(other than the Hopf point HB ) are marked along the branch: 1
 is a stable
equilibrium solution and 2
 to 5
 are periodic solutions, of which 2
 to 4
 are
canards and 5
 is a relaxation oscillation. The �ve solutions are represen ted in
the state space (x; y ) in the outer panels, together with the cubic nullcline S0 .

A simple stability analysis of (4) reveals a unique �xed point where _x = _y = 0,
which lies on S0 for all q. For jqj > 1 the �xed point is stable and lies on Sa , for
jqj < 1 it is unstable and lies onSr . When q = � 1, the system undergoes a Hopf
bifurcation which takes place at the fold of S0, creating a branch of stable periodic
orbits that displays the so-called \canard explosion". A surprising property of the
canards becomes clear when one plots orbits for various values ofq together with
the critical manifold S0 in the Li�enard plane. As shown in �gure 2, a periodic orbit
follows the attracting sheet Sa of the critical manifold down to the fold point, then,
counterintuitively, instead of being ejected at the fold along a fast �bre, the orbit



Canards and curvature: nonsmooth approximation by pinching 6

sticks to S0 along its repelling sheetSr for an O(1) time.
The family of canard cycles are distinguished as being \with head" or \without

head" as in �gure 2. The distinction depends on whether an orbit leaves the "-
neighbourhood ofSr along a fast �bre moving to the left (with head) or to the right
(without head) as depicted. The intervening case occurs at a parameter value q = q0

and is called themaximal canard, shown in panel 3 of �gure 2. The maximal canard
follows the unstable region for the greatest time possible by traveling the whole length
of Sr between the folds. The value ofq0 can be estimated numerically or calculated
analytically using asympotic expansions in" (e.g. [2]), and in section 4.1 we estimate
it geometrically.

To understand why the canards stick to the repelling critical manifold Sr , it is
usual to consider them from the viewpoint of invariant manifolds. In the singular
limit " = 0, S0 is an invariant manifold. The question of the persistence of
invariant manifolds for " > 0 was addressed in the 1970's in the work of Hirsh, Pugh
and Shub [14] and, in the context of slow-fast dynamical systems,in the work of
Fenichel [7, 8]; see also [18, 19]. Fenichel proved that compact normally hyperbolic
subsets of an invariant manifold, such asS0 in the present case, persist as locally
invariant manifolds S" (generally non-unique) for every small enough" > 0, and that
they are smooth " -perturbations of the unperturbed manifold. Normal hyperbolicit y
can be lost, however, as happens generically at (isolated) fold points in planar systems,
where attracting and repelling sheets of invariant manifolds intersect. Therefore, in
the case of the one-dimensional cubic critical manifoldS0, one can apply Fenichel
theory everywhere except the fold points.

The key to the canard explosion is the fact that a small parameter change can alter
the arrangement of the attracting and repelling branchesSa

" and Sr
" of the invariant

manifold S" . Speci�cally, the size of a canard cycle is determined by whether the
arrangement ofSa

" and Sr
" forces it to curve inside the critical manifold S0 (�gure 3(a))

to form a canard without head, or outside it (�gure 3(c)) to form a canard with head.
Since the two invariant manifolds exchange their position between �gures 3 (a) and
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Figure 3. Invariant manifolds in the neighbourhood of the fold during the canard
explosion. Showing the attracting and repelling invariant manifolds Sa

" and Sr
" ,

and the critical manifold S0 = Sa [ Sr , for di�erent values of q. In (a), Sa
" curves

inside Sr
" allowing for a small canard cycle; in (b), Sa

" and Sr
" coincide; in (c), the

two manifolds have exchanged their positions and the result ing periodic attractor
is a large canard cycle.

(b) as q varies, there must exist a parameter valueq = q0 at which they pass through
each other. Then, as the manifolds are themselves orbits, they must coincide as shown
in �gure 3(b). The canard that passes from Sa

" to Sr
" will remain on the repelling sheet

Sr for the longest distance possible, creating the maximal canard shown in panel 3
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of �gure 2. The strong (exponential) repulsion in the normal direction from Sr
" causes

the transition between small (without head) and large (with head) canard cycles to
occur within an interval of q that is of order e� c=" for somec > 0. This implies that
it is not trivial to resolve di�erent canard cycles, because their repelling segments
are all contained in an exponentially small thickness aroundSr . In order to obtain
quantitative as well as qualitative information about the canards along the explosive
bifurcation branch, changes of coordinate were introduced in [1] that magnify the
geometry close toSr , such that di�erent canards within the same subfamily (i.e. with
or without head) can be separated. The crucial point is that this magni�cation must be
exponentially strong in " in order to distinguish between orbits that are exponentially
close to each other, as we show in the following section.

2.2. Exponential microscope

To understand relaxation oscillations in more detail we must separate the canard
cycles, �gure 2, from the critical manifold, S0. We follow [1] by de�ning a new variable,
v = _x, which has the e�ect of stretching the phase portrait by a factor of 1=" in the
direction transverse to S0. In the (x; v) plane, (4) becomes

_x = v; (6a)

" _v = q � x � (x2 � 1)v: (6b)

The dynamics in these coordinates is somewhat changed in appearance, however it
is clear that there is a one-to-one correspondence between orbits of the van der Pol
system in the Li�enard plane (x; y) and in the phase plane (x; v). In these coordinates
x is a slow variable compared tov, so the slow dynamics is organised around a critical
manifold _v = 0, (in place of S0 which is now the v = 0 axis), given by

Sv = f (x; v) : v = 
 (x)g; where 
 (x) �
q � x
x2 � 1

: (7)

The change to coordinates (x; v) implements a magni�cation transverse to S0 by
a factor " . Although this separates the canard cycles fromS0 (as we shall see in
section 4.1), it is not strong enough to separate canard cycles from each other, and in
particular cannot resolve the maximal canard. To this end, Benô�t et al. introduced
an exponential microscope. For this stronger magni�cation we must do better than
zooming in on S0. As observed in [1], the maximal canard can be approximated near
the fold by Sv when q = 1, which by (7) is given the hyberbola v = 
 0(x) � � 1

1+ x .
Thus the required `microscope' variable is de�ned as

w = ( v � 
 0(x)) [" ] ; (8)

employing the notation

x [p] � j xjpsgn(x) (9)

which will recur throughout the paper. As was found in [1] (and we rederive in
section 4.1) using _w = dw

dt � dt
dx and letting � = ( q � q0)[" ] , we now have

_x = w[1=" ] + 
 0; (10a)

_w = w

 
x � q0


 0
+

�
�
w

� [1=" ]
!

; (10b)

recalling that q0 is de�ned as the parameter value for which the canard is maximal
(�gure 2 panel 3
 ).
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The term w (�=w) [1=" ] is a perturbation of the � = 0 (maximal canard) system.
It is small for jwj � � , where the perturbation is negligible, but in the strip jwj � �
this term dominates and the vector �eld is almost vertical. The illustra tion of this in
�gure 4 is based on the original analysis in [1], which can be summarized as follows.
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0

w
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Figure 4. The van der Pol system under the exponential microscope: (a) q < q0 ,
(� < 0), (b) q = q0 , ( � = 0), (c) q > q0 , ( � > 0).

In the parameter regime of the canard explosion, asymptotic analysis reveals that
� = q � q0 = exp( � c=") for a constant c > 0, guaranteeing that � � 1. At the
parameter value q = q0, when the canard cycle is maximal, (10) reduces to

_x = w[1=" ] ; (11a)

_w = w
x � q0


 0
: (11b)

Noticing that q0 lies in an "-neighbourhood of unity, and that canard orbits are
exponentially close to the hyperbolav = 
 0(x) near the fold, we can approximate
the system as

_x � �
1

1 + x
; (12a)

_w � � w(x � 1)(x + 1) : (12b)

System (12) is integrable, and provides the following approximation for the solutions
of system (11),

w � K exp
�

x4

4
+

x3

3
�

x2

2
� x

�
; (13)

where K is a constant. In �gure 4 we show the phase portrait given by (13) outside
the strip jwj > � . Inside jwj � � , the phase portrait is approximated by vertical �bres
with a direction given by the sign of � . When we discuss the method of pinching
in section 4.1, we will show how keen an insight this was, with computed plots that
reveal just how sharply the vector �eld changes between the strip's exterior, jwj > � ,
and its interior, jwj < � .

3. Pinched dynamical systems and sliding

In this section we introduce a piecewise-smooth formulation of multiple time-scale
systems, obtained by a method called pinching. We will use this later tocomplement
and extend the analysis in section 2.2. The method of pinching has its origins in [3],
where it was used to overcome the lack of uniqueness of orbits in Filippov's description
[9] of piecewise-smooth dynamical systems.

Consider a smooth vector �eld F : Rn 7! Rn , and the dynamical system

_x = F(x): (14)
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Let there exist a smooth scalar functionh : U 7! R on an open regionU � Rn , such
that r h 6= 0 everywhere onU. Let h have two level sets labeled

� � = f x 2 Rn : h(x) = � � g; (15)

for some� > 0, bounding a strip jhj < � which we call thepinch zone. (For motivation,
consider the pinch zone to be the strip of quasi-vertical 
ow,jwj < � , in �gure 4). We
shall denote by _h the Lie derivative of h along the 
ow of (14),

_h = _x �
d
dx

h(x) = F � r h: (16)

We wish now to approximate the solutions of _x = F in the pinch zone by some rule
that: (i) associates each point on � + with a point on � � , and (ii) replaces the vector
�eld between them by a suitable approximation.

In the local region U, we can de�ne a surjective map from the pinch zone
jh(x)j < � , to a switching manifold � � Rn � 1. We do this by choosing �bresx = p � (� )
that connect the two boundaries � + and � � , given by

f x = p � (� ) : p � (+1) 2 � + ; p � (� 1) 2 � � ; � 1 < � < 1g; (17)

so that each �bre is associated with (or projected onto) a unique point � 2 �. Two
such �bres are illustrated in �gure 5(a). The vector �eld on � is then the set

F � = f F (p � (� )) : � 1 < � < 1g: (18)

For simplicity we assume that, for any � , the set F � contains at most one vector that
is tangent to a level set ofh; we call this a sliding vector, and denote it as

FS (� ) =
n

F(p � (� )) : _h(p � (� )) = 0 ; j� j < 1
o

: (19)

We label the hypersurface_h = 0 as S. For FS to be unique one must have that, for
a given � , the chord p � (� ) is never tangent to S, hence we choosep such that the
derivative @_h=@�is non-vanishing, which we can write as the condition

@
@�

_h(p � (� )) =
@p � (� )

@�
� r (F(x) � r h(x)) 6= 0 : (20)

Moreover, if F (� ) contains a sliding vector, FS (� ), then we describe� as a sliding
point, otherwise it is a crossing point. Over any open region of sliding points, the
sliding vectors form an n � 1 dimensional vector �eld, and thus de�ne a dynamical
system on � given by

_� = FS (� ): (21)

Orbits of the pinched dynamical system are de�ned as the concatenation of:

(i) solutions of equation (14) in the regionsh(x) > � and h(x) < � � , and

(ii) solutions of equation (21) on �.

The following theorem follows directly from (19)-(21).
Theorem 3.1. (a) The boundary between crossing and sliding lies whereF is

tangent to � + or � � . (b) Zeros of F inside the pinch zone correspond to zeros of the
sliding vector �eld FS (� ), which we call sliding equilibria.

Taking h as a local coordinate, a vector �eld for the pinched system is obtained
by making a piecewise-smooth coordinate transformationh 7! ~h, where

~h = h � � sgn(h) for jhj > �; ~h = 0 for jhj � �: (22)

We say that the sliding region is:
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(a) (b)

F-( 2)
F-( 1)

F+( 2)

F+( 1)

F ( 2)F ( 1)
FS

S
S

F-( 2)
F-( 1)

F+( 2)

F+( 1)

F
S

( 
2
)

 +

 

 -

p
 1

(• )

p
 2

(• )

Figure 5. Pinching, and the origin of sliding. (a) A smooth vector �eld F , and
a pinch zone bounded by � � , which are joined by �bres p � (� ). The set-valued
vector �eld F (� ) is shown on �bres corresponding to a sliding point � 1 and a
crossing point � 2 . Sliding is determined by the positioning of a tangency surf ace
S (where _h = 0), on which we take the sliding vector FS . Above and below
the pinch zone the vector �eld is approximated by F � . (b) The pinched system
around a switching manifold �, obtained by pinching togethe r � + and � � . A
tangency of F + to � bounds sliding (right of S) and crossing (left of S) on �.

� stable if _h(p � (+1)) > 0 > _h(p(� 1; � )) (orbits 
ow locally towards �), and

� unstable if _h(p(� 1; � )) > 0 > _h(p � (+1)) (orbits 
ow locally away from �).

The intersection of S with � � is the locus of points whereF is tangent to � + or
� � . It is this intersection that partitions � into regions of sliding or cros sing, so the
domain of sliding is given byS \ f x : jh(x)j < � g :

Figure 5 illustrates how the dynamics of a smooth system (a) is approximated,
after pinching, by a piecewise-smooth system (b). Orbits that cross both boundaries
� � of the pinch zone in the same direction in (a), are approximated by orbits crossing
the switching manifold � in (b), while orbits that cross the boundaries in opposite
directions in (a) give rise to sliding on the switching manifold in (b). Also illu strated
is the content of theorem 3.1, showing that the boundary betweencrossing and sliding
is a tangency between the 
ow and the pinch zone boundary in (a), corresponding
to tangency between the 
ow and the switching manifold in (b), and showing that
an equilibrium inside the pinch zone in (a) is approximated by an equilibrium in the
sliding vector �eld in (b).

3.1. Filippov's sliding vector �eld

Equation (21) requires knowledge of the exact form of the vector�eld F inside the
pinch zone, but in many circumstances a further approximation is useful. Recalling
that F � is the set of values ofF(x) along the �bre p � (� ), we can approximate it with
a convex set ~F � , which is an interpolation between the values ofF at the endpoints
p � (� 1). Expressing these endpoint values asF � (� ) = F(p � (� 1)), we thus have

F � � ~F � �
�

1 + �
2

F+ (� ) +
1 � �

2
F � (� ) : � 1 < � < 1

�
: (23)

This is precisely the convex combination of two vector �elds F � used by Filippov
[9] to de�ne sliding on a switching manifold. A sliding vector, which lies on the
hypersurface S, is a vector ~F 2 ~F that satis�es ~F � r h = 0. Assuming that
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r h(p � (+1)) � r h(p � (� 1)), this occurs at � = � S , where

� S =
(F � + F+ ) � r h
(F � � F+ ) � r h

;

and therefore the sliding vector �eld is given by

~FS =
(F � � r h)F+ � (F+ � r h)F �

(F � � F+ ) � r h
: (24)

This is formally identical to Fillipov's sliding vector �eld, and provides us w ith a
piecewise-smooth dynamical system

_x =

8
<

:

F+ ; if h(x) > �;
~FS ; if jh(x)j < �;
F � ; if h(x) < � �:

(25)

How well (25) approximates the smooth system (14) clearly depends on how the pinch
zone jhj < � is chosen. For a slow-fast system such as the van der Pol oscillator
(4a) with small " , we can choose the pinch zone to be a neighbourhood of the critical
manifold S0. Importantly, the interesting quantities we calculate in later sections
depend on the geometry ofS, which itself depends on the choice of `pinch function'
h, but not on the width of the pinch zone � .

We will now apply pinching to take a fresh look at some familiar examples of the
canard phenomenon, before using it to derive a classi�cation of canards in section 5.

4. Applications of pinching in 2 and 3 dimensions

4.1. Pinching and sliding in the van der Pol oscillator

In this section we use the pinching formalism to analyse canards in thevan der Pol
oscillator. In �gure 6(a) we illustrate a relaxation oscillation simulated from (4) for
" = 0 :04. The critical manifold S0 is given by h = 0, where

h(x; y) = y �
1
3

x3 + x: (26)

0

0 2
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- 2
- 1
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y

SaSa
Sr

0

0 2
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- 2
- 2
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h
SaSa Sr

0 2- 2

0

1

- 1 0 2- 2

0

0.5

- 0.5

x

V
  

x

(c)(a) (b) (d)

~
V

pinch
micro-
scope

straighten

Figure 6. Simulation of (4) for " = 0 :04 and q = 0 :9, showing the same relaxation
oscillation (bold) in four coordinate systems: (a) the Li�e nard plane ( x; y ), (b)
the plane ( x; h ), (c) the exponential microscope ( x; V ), (d) the piecewise-smooth
system (x; ~V ). The critical manifold, consisting of attracting and repe lling
branches Sa and Sr , is straightened to give (b), a pinch zone jV j < " " emerges
around it in (c), which is pinched to a switching manifold ~V = 0 in (d).

If we vary the parameter q from the situation in �gure 6(a), there will be no observable
change in the segment of periodic orbit lying on the attracting righthand branch of the
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critical manifold Sa, prior to its sudden disappearance in a canard explosion (recall
�gure 2). Thus we attempt to resolve di�erent orbits by proceedin g along similar lines
to the exponential magni�cation in section 2.2, but we choose to magnify the Li�enard
variable y directly instead of using the phase variablev = _x; this has the bene�t that
x remains the fast variable. First, we simply straighten out the critical manifold S0

by taking h as a variable, giving the system,

" _x = h; (27a)

_h = q � x � (x2 � 1)
h
"

: (27b)

The relaxation oscillation from �gure 6(a) is shown in the (x; h) plane in �gure 6(b).
The critical manifold S0 is now the horizontal axis h = 0.

We now attempt to resolve canard orbits by magnifying the neighbourhood of S0.
To do this we introduce a variable

V = h[" ] � sgn(h)jhj" ; (28)

giving the system

" _x = V [1=" ]; (29a)

_V = V
�

(1 � x2) + V [� 1=" ](q � x)"
�

; (29b)

in which the same relaxation oscillation is plotted in �gure 6(c). The crit ical
manifold S0 remains on the horizontal axis, V = 0, and is evidently no longer
a local attractor/repeller, but is surrounded by a region, approximately jV j < " "

(corresponding to jhj < " ), where the 
ow is quasi-vertical. To consider the dynamics
relative to this strip, we �nd the nullcline _V = 0 for V 6= 0, given from (29b) by

SV = f (x; V ) 2 R2 : V =
�
" (x � q)=(1 � x2)

� [" ]
g: (30)

This is shown in �gure 7 for di�erent values of q. The curve SV becomes singular
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0 2- 2

0

1

- 1

x

V

 .
V=0

Figure 7. Exponential microscope. Phase portrait of the van der Pol os cillator
in the ( x; V ) magni�cation, for: (a) q < 1, (b) q = qV = 1, (c) q > 1. The dashed
curve is the nullcline _V = 0.

when (@_V =@x; @_V =@V) = (0 ; 0), forming the cross seen in the lower right region of
�gure 7(b), at a parameter q = qV . From (a) to (c) the nullcline SV thus undergoes
a bifurcation [4] in the form of a saddle transition. Solving (@_V =@x; @_V =@V) = 0
gives the coordinates of the singular point as (x; V ) = ( qV ; � ("=2)" ), and substituting
this into (29b) gives qV = 1, which therefore coincides with the Hopf bifurcation in
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the original system. The relaxation oscillation in �gure 7(a) disappears in a canard
explosion between (a) and (b).

We now derive a piecewise-smooth approximation from (29) by following section 3,
to arrive at �gure 6(d). It is natural to choose a pinch zone jV j < " " (equivalently
jhj < " ), inside which the vector �eld is near vertical. We will pinch along the V -
direction (setting p in section 3 aspx (� ) = ( x; �" " )). The vertical �bration of the
pinch zone by the 
ow implies that this is a good approximation to the dynamics. This
is equivalent to introducing a new coordinate as in (22), given by~V = V � " " sgn(V ).
From section 3, sliding occurs atx values for which the nullcline SV ( _V = 0) lies in

0 2- 2

0

1

- 1 0 2- 2

0

0.5

- 0.5

x

V

 .
V=0

! !

x

(a) (b)

~
V

pinch

Figure 8. Relaxation oscillation in: (a) the ( x; V ) magni�cation, (b) the
piecewise-smooth system obtained by pinching the region jV j < " " in (a). Plotted
for the same parameter values as �gure 6(a). S0 is the V = 0 axis, the dashed
curve is the nullcline _V = 0 corresponding to _h = 0.

the pinch zone. From (30), the sliding region is therefore given by

jV j =

�
�
�
�

x � q
1 � x2

�
�
�
�

"

" " < " " ) j x � qj < j1 � x2 j; (31)

on the switching manifold ~V = 0. The sliding vector �eld has an equilibrium at
x = q. The boundaries of sliding, where the vector �eld is tangent to the switching
manifold, are therefore wherejx � qj = j1 � x2 j. The tangencies to the upper and
lower side of the manifold are labeledT1 and T2 respectively in �gure 9. The critical
manifold S0 has become the switching manifold, with stable sliding corresponding
to the attracting manifold Sa , and unstable sliding corresponding to the repelling
manifold Sr , as shown.

It is not necessary to calculate the sliding vector �eld explicitly (thou gh it is
easily found from (24)), as we can infer it qualitatively from two facts: �rstly that the
stability of the sliding equilibrium (stable for jqj < 1 and unstable for jqj > 1), and
secondly that, from (24), the sliding vector �eld is equal to the upper vector �eld at
T1 and to the lower vector �eld at T2.

Inspection of the piecewise-smooth vector �eld in �gure 9(a) makes it clear that
a relaxation oscillation occurs because an orbit, sliding towardsT2 from the right, will
detach from the manifold at T2, pass through the manifold nearx = � 1, and then be
re-injected into the sliding region from above. The bifurcation of the curveSV at q = 1
causes the tangency points to collide in �gure 9(b). Then the crossing region (dotted)
between T1 and T2 shrinks to nothing, and a canard orbit exists that passes from
the stable to unstable sliding regions (fromSa to Sr ). Every point on the unstable
sliding region Sr belongs to a family of orbits that travel along Sr for some time,
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T1 Sa Sa SaSaSaSa Sr Sr SrT2 T2 T1T1/2

(a) (b) (c)

Figure 9. Sketch of the bifurcation responsible for the canard explos ion: (a)
relaxation oscillation at q < 1, (b) the simple canards at q = 1, (c) stable sliding
equilibrium at q > 1. The upper and lower vector �elds are tangent to the
switching manifold at T1 and T2 respectively. These bound the sliding regions
(horizontal lines) and crossing regions (dotted horizonta l lines). The black spot
is the sliding equilibrium, unstable in (a) and stable in (c) . Sa and Sr label
the stable and unstable sliding regions, approximating sta ble and unstable slow
manifolds of system (29).

before departing into either the upper or lower half planes and beingreinjected into
Sa ; every one of these is a periodic orbit and constitutes an instantaneous `snapshot'
of the entire canard explosion. When the tangency points separate in �gure 9(c),
orbits in the righthand sliding region are attracted to the sliding equilib rium and no
periodic orbits are possible. Thus the bifurcation that takes place in�gure 9 describes
the sudden disappearance of the relaxation oscillation, via the instantaneous existence
of a family of canard cycles atq = 1. In section 5 we will classify this as the simple
canard case of acatastrophic sliding bifurcation.

Let us now show that the same method can split the instantq = 1 into two families
of canards: those in �gure 9(b) that detach from the upper side of the switching
manifold (without head) and those that detach from the lower side (with head).

Whereas in �gures 6 (a) and (b) the cycle (bold) appears to lie on an attracting
branch Sa of the critical manifold as it approaches the fold, we see from �gure7(a),
in which Sa lies on the axisV = 0, that the cycle lies instead on the curve _V = 0.
Let us therefore approximate the canard by the curveSV when q = 1. Solving _h = 0
(equivalent to _V = 0) for q = 1, from (27b), con�rms the result that led to (8), that
near the knee ofS0 at (x; y) = (1 ; � 2=3), the canard is given by

h � "
 0(x) � � "
1

1 + x
: (32)

To magnify the phase portrait around this curve in the h-direction we use a di�erent
exponential scaling, introducing the variable

W = ( h � "
 0(x)) [" ] ; (33)

and obtaining the system

_x =
1
"

W [ 1
" ] + 
 0(x); (34a)

_W = jW j1� 1
"

�h
W [ 1

" ] + "
 0(x)
i �

(1 � x2) � "
 2
0 (x)

�
+ ( q � x)"

�
:(34b)

The relaxation oscillation in the (x; W ) plane is illustrated in �gure 10(a). The focus,
which in the (x; V ) plane resided inside the pinch zone, has now been lifted outside.
Compare this to �gure 4(a), which is restricted to � 1 < x < 2 and a vertical range
that excludes the focus; the variableW di�ers from the analysis of Benô�t et al leading
to (8) by a scaling W = " " w. Notice that the vector �eld, while vertical in the region
given approximately by jW j < " 2" , changes direction as it passes through the nullcline
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_W = 0. As q changes from (a) to (c) in �gure 10, the nullcline segment inside the pinch
zone sweeps to the right, changing the vertical vector �eld direction from downward
to upward.
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Figure 10. Second exponential microscope. Phase portrait of the van de r
Pol oscillator in the ( x; W ) magni�cation, for: (a) q < qW , (b) q = qW , (c)
1 > q > q > W . The dashed curve is the nullcline _V = 0. Compare the region
x > 0 to �gure 4.

The nullcline _W = 0 is given from (34b) by

SW =

(

(x; W ) 2 R2 : W =
�

x � q
1 � x2 � "
 2

0 (x)
� 
 0(x)

� [" ]

" "

)

: (35)

Similar to the bifurcation of the nullcline SV at q = 1, the curve SW becomes singular
at some parameterq = qW , forming a cross as shown in �gure 10(b). This takes
place when (@_W =@x; @_W=@W) = 0, the solution of which gives the coordinates of the
singularity as

(x; W ) =

 

qW ; �
�

3"2

2(1 + qW ) (qW (1 + qW )3 � " )

� [" ]
!

; (36)

and substituting these into _W = 0 gives the bifurcation parameter q = qW as the
solution of

" = (1 � qW )(1 + qW )3: (37)

Similarly to the ( x; V ) system, we now de�ne a pinch zone given byjW j < " 2" in
which the vector �eld is almost vertical. We pinch vertically, in this case by de�ning
a new variable ~W = W � "2" sgnW , and in the (x; ~W ) plane we obtain a piecewise-
smooth system as shown in �gure 11. We omit the details for calculating the sliding
dynamics on the switching manifold ~W = 0, as the steps are similar to those for the
(x; ~V ) system, and because the necessary information can be inferreddirectly from
(34)-(35).

The vector �eld is tangent to the switching manifold at the x-values where the
curve (35) enters the pinch region. We label themT1 and T2 for the tangency to the
upper and lower side of the switching manifold respectively. As illustrated in �gure 12,
for q < qW , T1 lies to the left of T2, with stable sliding to the right of T2. This allows
a periodic orbit to exist as simulated in �gure 11(b) and sketched in �gure 12(a). As
the nullcline _W = 0 bifurcates, at q = qW given by (37), the two tangencies collide. A
canard orbit then passes from the stable to unstable sliding regions, and since every
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Figure 11. Relaxation oscillation in: (a) the ( x; W ) magni�cation, (b) the
piecewise-smooth system obtained by pinching the region jW j < " 2" in (a).
Plotted for the same parameter values as �gure 6(a). The dott ed curve is the
nullcline _W = 0.

point in the unstable sliding region belongs not only to an orbit in the sliding region,
but also to orbits departing into both the upper and lower half planes, every one of
these is also a periodic orbit and constitutes an instantaneous `snapshot' of a canard
explosion. This explosion is not the one observed in the (x; V ) plane, �gure 9, because
it terminates not in a stable focus, but in the small periodic orbit shown in �gure 12(c).
This, instead, is a cascade between the canard with head in �gure 12(a) and the canard
without head in �gure 12(c). In section 5 we will classify this as the visible canard
case of acatastrophic sliding bifurcation.

(a) (b) (c)

T1 T2 T1T2T1/2

SaSr SaSr SaSr

Figure 12. Sketch of the bifurcation responsible for the transition be tween
canards with and without head: (a) a large cycle corresponds to the canard
with head at q = qW � 10� 4 , (b) the visible canard at q = qW , (c) a small
cycle corresponds to the canard without head at q = qW + 10 � 4 . The upper and
lower vector �elds are tangent to the switching manifold at f old points T1 and
T2 respectively; these exchange exchange ordering in the bifu rcation. Sa and Sr

label the stable and unstable sliding regions, approximati ng stable and unstable
slow manifolds of system (34).

Previously we assigned the valueq = q0 to the maximal canard, which marks the
transition between canards with and without head. The bifurcation of the _W = 0
nullcline at q = qW signi�es a change in curvature of the 
ow, from pushing orbits
upwards to pushing them downwards relative to the maximal canard at W = 0.
Therefore qW gives us a geometrical approximation for the valueq = q0 at which the
maximal canard occurs,q0 = qW , and hence from (37) we obtain a quartic expression
for q0:

" = (1 � q0)(1 + q0)3: (38)
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Thus the bifurcation in �gure 12 controls the disappearance of a large cycle
(�gure 12(a)) to be replaced by a small cycle (�gure 12(c)), via an instantaneous
canard cascade atq = qW .

For q � q0 we can use an observation of [1] that led to (10b), namely that we can
rewrite (34a) using the following result which is proved in the Appendix:

Lemma 5.1 [1] The ordinary di�erential equation (34b) can be rewritten as

1
W

_W =
x � q0


 0
+

q � q0

W [1=" ]
": (39)

Using this lemma, we can approximate forq � q0 su�ciently small,

_x � 
 0(x); (40a)

_W � W
x � q0


 0(x)
: (40b)

Replacing the lefthand side of (40b) with _W = _x dW
dx = 
 0(x)W d log W

dx , we can solve
to �nd

W (x) � W (0) exp
�

� q0x �
2q0 � 1

2
x2 +

1
3

x3 +
1
4

x4
�

(41)

as �rst found in [1] and recounted in (13), except that here q0 is included with the
value (38)) instead of approximation by unity. This gives an approximate expression
for the trajectories of canards in the regionjW j > " 2" .

This can be improved using the pinched piecewise-smooth system, because the
vector �elds in the half planes ~W > 0 and ~W < 0 are independent. In particular we
can make independent approximations in either half plane. We linearizeabout the
equilibrium in the upper half plane, and expand for small ~W in the lower half plane
(where there are no equilibria), and also expand aboutx = 1, to obtain

_x � �
1
2

+ H (W )W [1=" ]="; (42a)

_W � 2W
�

(q0 � x) + H (W )(q � q0)
�

1 �
2
"

W [1=" ]
��

; (42b)

whereH (W ) equals 1 ifW > 0 and 0 if W < 0. This adds a correction to (40) outside
jW j > " 2" that captures the focus in the upper half plane, and captures theexchange
of tangency points responsible for the canard. Using the pinching method, we have
thus derived a piecewise-smooth system, (42), that captures the geometry behind the
canard explosion in �gure 12 and extends the nonstandard analysissummarized in
section 2.2.

Let us brie
y review what information about the singularly perturbe d system has
been captured by pinching. The exchange of tangency pointsT1 and T2 in �gures 9
and 12 enacts a discontinuity-induced bifurcation { bifurcations of the periodic orbits
caused by interaction with the discontinuity at V = 0 or W = 0. These cases are
catastrophic forms of sliding bifurcations [16], whose classi�cation we will present
in section 5. These sliding bifurcations in the (pinched) piecewise-smooth system
correspond to bifurcations in the topology of the nullclines _V = 0 and _W = 0 in the
smooth system, coinciding with the Hopf bifurcation and maximal canard respectively.
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4.2. Pinching and sliding in the Fitzugh-Nagumo equations

We now extend the analysis of the previous section, where an oscillator underwent a
supercritical Hopf bifurcation, to a case involving a subcritical Hopf bifurcation. As a
speci�c example we take an abstract form of the FitzHugh-Nagumoequations [10] used
to model electrical excitations in nerve membranes. Written in terms of a membrane
voltage potential v and recovery variablew, setting f (v) = �v 3 + (1 + � )v2 � �v and
g = g(v; w) a�ne, these take the form

" _v = �v 3 + (1 + � )v2 � �v � w + I; (43a)

_w = bv� cw; (43b)

where �; �; I; are parameters andb; c;are constants. This is equivalent to (3) up to a
simple coordinate translation,

x = v �
1 + �

3�
; y =

I � w
3�

� f
�

1 + �
3�

�
; (44)

giving (3) with f (x) = 1
3 x3 � rx and g(x; y) = q � px � y, to obtain

" _x = y �
1
3

x3 + rx; (45a)

_y = q � px � y: (45b)

The critical manifold S0 of this system is the curveh = 0, where

h(x; y) = y �
1
3

x3 + rx: (46)

The form of S0 depends onr , and we �x r > 0 so that S0 has two turning points
(where f 0(x) = 0), at ( x; y) = �

p
r (1; � 2

3 ). Throughout this section we will keep r
and p �xed and vary q as a bifurcation parameter.

The dynamics depends upon the number of equilibria of (45). These occur at
(xeq; yeq) where xeq is a solution of 1

3 x3
eq + ( p� r )xeq � q = 0. The number of solutions

depends on the discriminant � = (3 q=2)2 + ( p � r )3. If � < 0 there are 3 equilibria,
and a stable cycle that can be destroyed by homoclinic connection toa saddle. In this
section we restrict attention to the simpler case with one focus, � > 0, so we �x

� = (3 q=2)2 + ( p � r )3 > 0: (47)

The 
ow is illustrated in �gure 13. A relaxation oscillation exists in (a). I t is
subsequently destroyed, but by a di�erent process to that in section 4.1. There is
a focus equilibrium which in (a) lies on the unstable branchSr of S0. The focus
changes stability in a subcritical Hopf bifurcation, creating an unstable cycle as shown
(dotted) in �gure 13(b). The unstable cycle undergoes a canard explosion, and (b)
captures an instant in the sequence of canards. In this system, the unstable canard
is without head and grows in amplitude, while the stable canard is with head and
shrinks in amplitude. In (c), the two cycles coincide at a parameterq = q0 to be
determined, and annihilate in a saddle-node bifurcation of cycles. Atq = q0, the two
cycles coincide and we observe numerically that these are close to a maximal canard
(dotted). Afterwards, in (d), the cycles are destroyed, leavinga stable focus onSa .

We will not go into as much detail as the previous section, and insteadseek only
to derive the mechanism by which the cycles are destroyed in �gure 13(c), following the
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Figure 13. Simulation of (45) for " = 0 :04. Plots are with p = r = 1 and q
values: (a) q0 � 0:02, (b) q0 � 6:045 � 10� 5 , (c) q0 , (d) q0 + 0 :02. The cubic
curve is S0 given by _x = h = 0, with attracting branches Sa and repelling branch
Sr . Stable (bold) and unstable (dotted) periodic orbits are sh own around a focus
(spot). The maximal canard parameter q0 is to be determined.

same steps as in section 4.1. We �rst straighten outS0 by transforming to coordinates
(x; h), giving the system

" _x = h; (48a)

_h = � p(x) +
1
"

� 0
" (x)h; (48b)

in terms of the function

� � (x) � h(x; q � �x ) = �
1
3

x3 + ( r � � )x + q; (49)

and its derivative � 0
� (x) = r � � � x2. The nullcline _h = 0 is the curve h = "
 (x),

where


 (x) � � � p(x)=� 0
" (x): (50)

This nullcline bifurcates when @_h=@x= @_h=@h= 0. Solving these we �nd that the
bifurcation takes place at coordinates

(x; h) = ( xh ; hh ) �
�

�
p

r � ";
" (" � p)

2xh

�
; (51)

and substituting these coordinates back into _h = 0 we �nd the bifurcation parameter
value to be

q = qh �
1
3

x3
h + ( p � r )xh : (52)

This coincides with the value ofq at which an subcritical Hopf bifurcation takes place.
We can magnify the strip jhj < " by rescaling to a coordinateV = h[" ] as in (28),

obtaining

" _x = V [1=" ]; (53a)

_V = jV j
�

� 0
" (x) + "V [� 1=" ] � p(x)

�
; (53b)

then derive a pinched system to approximate it. The piecewise-smooth system
obtained at this level is identical to �gure 9, that is, the unstable cycle belongs to
the in�nite number of coexisting periodic orbits at q = qh , none of which can be
distinguished as either stable or unstable. As before, to distinguishbetween di�erent
canards we must magnify around the maximal canard.



Canards and curvature: nonsmooth approximation by pinching 20

The maximal canard, similarly to section 4.1, is found to lie on the curvegiven
by the nullcline _h = 0 when q = qh . We therefore let 
 0(x) be the function 
 (x) from
(50) with q = qh , and approximate the maximal canard by h � "
 0(x), where


 0(x) � �
� p(x) + qh � q

� 0
" (x)

= �
1
3

�
x +

3p � 2r � "
x �

p
r � "

�
: (54)

The nullcline _V = 0 bifurcates at the same parameterq = qh as the nullcline _h = 0.
To magnify around this maximal canard curve, we rescale to a coordinate

W = ( h � "
 0(x)) [" ] , obtaining

_x =
1
"

W [1=" ] + 
 0(x); (55a)

_W = jW j[1� 1
" ]

�
[� 0

" (x) � "
 0
0(x)][W [ 1

" ] + "
 0(x)] + "� d(x)
�

; (55b)

where 
 0
0(x) = [2 x
 0(x) + ( p � r + x2)]=(r � " � x2):

The nullcline _W = 0 bifurcates when @_W=@x= @_W=@W= 0, which we solve
to �nd the bifurcation coordinates ( x; W ) = ( x0; W0). For the same reasoning as in
section 4.1, this bifurcation takes place approximately when the maximal canard is
formed. We �nd that x0 is a solution of

� 0
" (x0) � "f 0

0(x0) = 0 ; (56)

which can be solved numerically, or expanded as a Taylor series to �nd

x0 � xh +
3"(2r � p � " )

4(r � " )(6r � 7" )
xh + O

�
(x0 � xh )2�

(57)

and, exactly,

W0 =
�

� "
 0(x0) �
� 0

p(x0)
1
" � 00

" (x0) � 
 00
0 (x0)

� [" ]

: (58)

Substituting these into _W = 0 we �nd the bifurcation parameter q = q0 at which the
maximal canard exists to be given by

q0 =
1
3

x3
0 + ( r � p)x0: (59)

Simulations in this case are similar to �gure 11(a), except that they reveal an unstable
cycle around a stable focus as shown in �gure 14(a) forq < q0. At q0 in (b), the
tangenciesT1 and T2 of the upper and lower vector �elds to the switching manifold
collide, allowing a canard orbit to pass from the stable to unstable sliding regions,
giving rise to a family of canard cycles. As for the supercritical van der Pol system, we
have canards with head that depart from the underside of the unstable sliding region,
and canards without head that depart from the upper side, but now these correspond
to the cascades of stable and unstable canards, one of which is themaximal canard.
Afterwards, for q > q0 in (c), the piecewise-smooth system contains no mechanism by
which a periodic orbit can exist, as all orbits are attracted towards the stable focus.

Similarly to the supercritical van der Pol system, the bifurcation in t he pinched
system will be classi�ed in section 5 as a visible canard case of catastrophic sliding
bifurcation. We could go on to consider similar systems, such as replacing (45b) with
_y = q � px + y, in which a supercritical Hopf bifurcation is followed by a canard
explosion that can be interrupted by a homoclinic connection to a saddle. In such
a case, it might be appropriate to perform an exponential magni�cation around the
stable manifold of the saddle to determine when it becomes part of a canard. Instead
of considering further such extensions, let us now turn our attention to canards in
three dimensions.
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(a) (b) (c)

T1 T2 T1T1/2 T2

SaSr SaSr SaSr

Figure 14. Sketch of the bifurcation responsible for the stable and uns table
canard explosions in the subcritical van der Pol system: (a) a stable cycle (bold)
with head and unstable cycle (dotted) without head at q = q0 � 10� 4 , (b) a visible
canard exists at the maximal canard parameter q = q0 , (c) no periodic orbits exist
for q = q0 + 10 � 4 . The upper and lower vector �elds are tangent to the switchin g
manifold at fold points T1 and T2 respectively; these exchange exchange ordering
in the bifurcation.

4.3. Two fast variables in three dimensions: the Hindmarsh-Rose burster

We now give an example of pinching in a three dimensional system. Unsurprisingly
the analysis is more involved in three dimensions, and it is beyond the scope of this
paper to investigate such a system in detail. We give only a brief introduction to
the analysis that can be carried out, taking the Hindmarsh-Rose equations [13] as an
example.

A slow-fast system inR3 with two fast variables has a fast subsystem that is two-
dimensional. This allows for the possiblity of periodic motion in the fast dynamics,
which can induce bursting oscillations in the full system [15]. The Hindmarsh-Rose
equations are a classic example of a simple bursting system, and can be written as

" _x = z � f (x) + I � y; (60a)

_y = s(x � x1) � y: (60b)

" _z = g(x) � z; (60c)

wheref (x) = ax3 � bx2 and g(x) = c� dx2. Here x represents a voltage variable andy
a slowly varying current, giving a slow-fast system of the form (3),to which we add a
fast variable z and applied current I , see [12] for more details. We take typical values
a = 1, b = 3, c = 1, d = 5, and s = � 1:618, that are known to be physically relevant.

This model exhibits spiking behaviour. One can observe by numericalsimulation
that periodic bursting attractors are formed by an alternation between rapid phases,
containing a number of spikes, and slow resting phases. Parameter-dependent families
of periodic orbits are known to exist and display a spike-adding phenomenon. In the
following we consider branches of periodic attractors obtained upon variation of I , but
a similar spike-adding phenomenon exists whenI is �xed and " is varied. At low I -
values, the unique stable equilibrium of the system undergoes a Hopfbifurcation where
a branch of stable periodic attractors is born at the point labelled ysp in �gure 15.
The Hopf point is located very close to one fold of thev-nullcline and the subsequent
periodic orbit follows the unstable (middle) branch of this cubic nullcline. Hence these
periodic orbits are of canard type and the phenomenon is reminiscent of a canard
explosion. For increasingI -values, the associated periodic orbit stays close to the
unstable branch for a longer time, until eventually it remains close long enough to
reach the upper fold point. This is consistent with the notion of a maximal canard.
Shortly after this, as I increases, the associated periodic orbit starts to develop a fast
oscillation { a spike. Hence the spike's appearance is suggested to becanard-induced,
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and it is found that the process repeats itself again and again, asI increases, each
time adding an extra fast spike, as shown in �gure 15.

y

x

z

ysp y1

y2

spike

canard
without head

lip

 .
z=0

 .   .
x=z=0

Sa

Sr

Figure 15. Periodic attractors of the Hindmarsh-Rose model (60), for d i�erent
values of the applied current I . The quadratic surface _z = 0 is shown, and
contains the cubic curve S0 = Sa [ Sr , the family of equilibria of the associated
fast subsystem, which undergoes a Hopf bifurcation at the po int marked y = ysp .
A canard cycle without head is shown, and follows S0 . The cycle grows into
a maximal canard, developing a `lip' as it passes over the fol d of the quadratic
surface. When the cycle grows beyond the Hopf point it leaves the surface and
grows a spike that winds around S0 via the fast subsystem.

We now demonstrate how the analysis of previous sections can be used, by
applying the exponential microscope followed by pinching, to derive the birth of the
�rst spike. For a general analysis of the spike-adding phenomenonin terms of slow
manifolds of saddle type and the relative position of their (un)stablemanifolds, see
[11].

Non-spiking cycles remain close to the parabolic surface _z = 0, so we begin by
considering only the dynamics therein. (A stronger case for this is when the fast
subsystem itself has two time-scales, so that (60) read"1x = :::, y = :::, "2z = :::,
with "1 � "2 � 1, and we can restrict to the fast subsystem by setting"2 = 0. This
subsystem itself has slow-fast time-scales with ratio" = "1="2 � 1. In e�ect, the small
parameter " pushes the Hopf bifurcation point in the fast subsystem in the direction of
decreasingz. Recalling that the Hopf point initiates spiking, this causes the periodic
attractor of the full system to lose its burst, following instead a small oscillation via
the fast subsystem; such a periodic attractor resembles a canard with head where the
orbit leaves the vicinity of the repelling branch of the cubic nullcline and relaxes onto
the attracting branch by oscillating around it.)

Let us then begin by �xing to the surface y = c � dx2, upon which the dynamics
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is given by

" _x = c + I � y � ax3 + ( b� d)2; (61a)

_y = s(x � x1) � y: (61b)

As for a planar system, we then straighten out the cubic curve where _x = 0 by
replacing y with the coordinate h = " _x, obtaining

" _x = h; (62a)

_h = � d(x) + h
�

1
"

� d(x) � 1
�

; (62b)

where

� � (x) = c + I � ax3 + ( b� � )x2: (63)

The nullcline _h = 0 bifurcates when 0 = _h = @_h=@x= @_h=@h, with solution
0 = � d(x) = � 0

d(x) � " = "s + 2 h(b� d) � 2h"=x, giving

xh =
1
3a

�
1 � b� d �

p
(b� d)2 � 3a"

�
; (64a)

hh = � "s=2
p

(b� d)2 � 3a"; (64b)

I h = ax3
h � (b � d)x2

h � I: (64c)

At the parameter I = I h , a Hopf bifurcation takes place (as is con�rmed by a simple
stability analysis). The maximal canard closely follows the curve givenby the nullcline
_h = 0 when I = I h , that is h = "
 0(x), where


 0(x) =
� d(x)

" � � 0
d(x)

: (65)

In the previous two sections we then magni�ed the strip jhj < " . Let us omit this
(as we found it does not distinguish di�erent canards from each other), and instead
magnify around the maximal canard by introducing the variable W = ( h � "
 0(x)) [" ] ,
giving the system

_x =
1
"

W [1=" ] + 
 0(x); (66a)

_W = jW j1� 1
"

�
[� 0

d(x) � " � "
 0
0(x)][W [ 1

" ] + "
 0(x)] + "� d(x)
�

: (66b)

The nullcline bifurcates when 0 = _W = @_W =@x= @_W =@W, the solution of which
gives

I 0 = ax3
0 � (b � d)x2

0 � I; (67)

where x0 is a solution of

� 0
d(x0) � "
 0

0(x0) = "; (68)

and, for completeness, we have also

W0 =
�

"� 0
d(x0)


 00
0 (x0) � � 00

d (x0)
� "
 0(x0)

� [" ]

: (69)

Beyond this value of I 0, the canard develops a head that remains, for a short range
of parameters, on the parabolic surface _z = 0. We can estimate this parameter range
as follows. Let �I = I 0 � I h , then the canards without head exist over the parameter
rangeI 0 � �I < I < I 0. The canard with head can exist over a similar range the other
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side of I 0, that is, I 0 < I < I 0 + �I , during which the head grows over the region
y2 < y < y 1, where y1 = I + c and y2 = c + I +

�
2
a

� 2 �
b� d

3

� 3
. The head does not

reach full size, however, being interrupted by the Hopf point of the fast subsystem and
developing a spike. Let us say that this takes place aty = ysp , shown in �gure 15.
If each spike grows linearly with I up to y2, then spike growth takes place over a
parameter rangeI sp < I < I sp + y2 � ysp

y2 � y1
�I , and is preceded by a `lip' | the canard

brie
y growing a head | over a range I 0 < I < I sp . If we assume that the growth of
the head with I is approximately linear, then

I sp � I 0 +
ysp � y1

y2 � y1
�I: (70)

It remains to �nd the value y = ysp at which the fast subsystem undergoes a
Hopf bifurcation by solving _x = _y = 0 and @_x=@x+ @_y=@y= 0, giving ysp =
I + c � ax3

sp + ( b� d)x2
sp , where xsp =

�
b�

p
b2 � 3a

�
=3a.

Finally, it is possible to capture the creation of the �rst spike via the canard
explosion, by using an exponential microscope and looking at bifurcations of level sets
associated with the 
ow. A complete description of the spike-addingphenomenon
in such bursters, the necessary exponential rescalings, and thebifurcations of level
sets, is beyond the primarily expository scope of this paper; thesewill be addressed
in future work. We turn now to a more general result, a local classi�cation of the
di�erent forms of canards that are possible in systems of arbitrary dimension.

5. Classi�cation of canards in piecewise-smooth systems

Recently, a class of discontinuity-induced bifurcations a�ecting periodic orbits have
been classi�ed in piecewise-smooth systems. In [16], it was stated that these
\catastrophic sliding bifurcations" included a classi�cation of three generically
occuring canards. We will show here how these can be derived from singularly
perturbed systems by the method of pinching.

In a neighbourhood of one of the foldsf f 0(x) = 0 g of the critical manifold S0

in (4), we can neglect terms cubic in (x � 1) and, after a simple change of variables,
write

" _x = y �
1
2

x2; (71a)

_y = q � x: (71b)

This expresses a slow-fast system with a critical manifoldS0 given by y = 1
2 x2, in the

neighbourhood of a fold point at the origin. We can use pinching to derive a piecewise-
smooth approximation to this system. Let h = y � 1

2 x2, so that the critical manifold is
h = 0, and choose a neighbourhood,jhj < � for some� > 0, to form a pinch zone. The
nullcline _h = 0, labeled S in section 3, is given byS =

�
(x; 1

2 x2 + "
� q

x � 1
�
) : x 2 R

	
.

We can pinch in the y-direction along �bres (17) given by px (� ) = ( x; 1
2 x2 + �� ).

This is equivalent to de�ning a new coordinate ~y = y � � sgn(h) which, by substitution
into (71), satis�es the piecewise-smooth system

_x =
�
"

sgn(~y �
1
2

x2) + O
�
~y; x2�

; (72a)

_~y = q � x: (72b)

From (19), we can derive a sliding vector �eld FS = q� x
x (1; x) on the switching

manifold ~y = 1
2 x2. This appears to be divergent at x = 0, but from section 3, it
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only applies on the sliding region, for which
�
� q

x � 1
�
� < �

" , hence the point x = 0
does not lie in this region so the divergence is never encountered. The boundaries
are the tangencies of the upper vector �eld to the switching manifold at T1, where
x = q=(1 + �=" ), and of the lower vector �eld at T2, where x = q=(1 � �=" ), where
the vector �eld curves respectively towards and away from the manifold. There is a
sliding equilibrium (a point where FS = 0) at x = q.

If we plot the phase portrait in the ( x; h) coordinates for varying q we arrive at
�gure 16(a). Consider if the orbit marked ? (for q < 0) is the local segment of a
periodic orbit that detaches from the manifold at T1. Let q increase: the tangencies
collide when q = 0, at which point the orbit can pass from the stable to unstable
sliding regions; we call this asimple canard. For q > 0 the orbit terminates at the
sliding equilibrium, hence the periodic orbit has vanished, but has doneso instantly
(or catastrophically).

(a)           (b)

stable 
sliding

unstable 
sliding

crossing

crossing
q

0

h

x

line of 
equilibria

q
0

! !T1

T2

T1

T2

simple canard visible canard

Figure 16. Types of canard in two dimensions, as the parameter q varies. A
small change of inset causes a jump in the outset. We classify these as: (a) simple
canard, (b) visible canard.

Notice that the tangencies T1 and T2 in �gure 16(a) are such that the vector
�elds curve locally downward, con�rmed by verifying that •h < 0 in the 
ows of (71).
More generally in a piecewise-smooth system, the sign of•h can be positive at both
tangencies, or di�erent at each, so the vector �eld can curve towards or away from the
manifold. When all possible scenarios are considered, it is easily veri�ed (provided
•h 6= 0, see [9] or [16]) that there are two other cases in which an orbit passes from
stable sliding to unstable. One of these is uninteresting, because the 
ows either side
of the manifold both curve towards it, keeping the 
ow within a neighb ourhood of
the manifold. The interesting case is shown in �gure 16(b). Here, anorbit with a
tangency to the manifold is visible on both sides of the canard parameter, hence we
call this a visible canard.

The double tangency point through which the canard trajectory passes is not
generic in two dimensions, and is only seen under variation of a parameter (such asq).
In three dimensions, however, tangencies occur along curves, and generically these can
cross to form double tangencies. We now show how these are derived from a singular
perturbation problem.

Consider the three dimensional system:

" _x = y �
1
2

x2; (73a)

_y = bz+ cx; (73b)

_z = a; (73c)

which is a local normal form for a three dimensional system with a slowvariable
added to (71) [23]. As above, we can leth = y � 1

2 x2, de�ne a pinch zonejhj < � , and
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pinch along the y-direction by de�ning a coordinate ~y = y � � sgn(h), which satis�es
a piecewise-smooth system

_x =
�
"

sgn(~y �
1
2

x2) + O
�
~y; x2�

; (74a)

_~y = bz+ cx; (74b)

_z = a: (74c)

The sliding vector �eld FS is given on ~y = 1
2 x2 by

_x = ( bz+ cx)=x (75a)

_z = a: (75b)

This can be recognised from [23] as similar to the slow subsystem of (73) when " = 0.
Notice, however, that this piecewise-smooth approximation has been obtained for
nonzero " . The sliding region is given by j(bz + cx)=xj < �=" , which excludes the
line x = 0 where (75a) is singular. The boundaries of the sliding region are where
the vector �elds in (74) are tangent to the switching manifold ~y = 0. They lie along
z = ( � �

" � c)x=b, labeled T1 and T2 in �gure 17. These lines cross at the origin, and
the sliding vector �eld is not well de�ned there.

(a)        (b)        (c)T1

T2

!(a)        (b)        (c)(a)        (b)        (c)!(a)        (b)        (c)(a)        (b)        (c)!

crossing

crossing

unstable
sliding

simple canard
(folded saddle)

robust canard
(folded node)

visible canard

stable
sliding

Figure 17. The 3 canards in three dimensions. A small change of inset cau ses a
jump in the outset. We classify these as: (a) simple canard, ( b) robust canard, (c)
visible canard. Their corresponding classi�cation in sing ularly perturbed systems
[23] is indicated in brackets, noting that (c) seems not to ha ve appeared previously
in the singular perturbation literature. The vector �eld is tangent to the upper
side of the switching manifold along T1 , and to the lower side along T2 . An extra
arrow in (a)-(b) shows that the vector �eld curves towards th e manifold around
T2 .

We can infer the phase portrait of the sliding vector �eld by considering the
desingularised system (x _x; x _z), which has at the origin: a saddle if ab > 0, a focus if
ab < ab+ 1

4 c2 < 0, and a node ifab < 0 < ab + 1
4 c2; the focus/node is attracting if

c < 0 and repelling otherwise. We need then to observe that the equilibrium of the
desingularized system (x _x; x _z) is not a true sliding equilibrium (that is FS is not zero,
and not even uniquely de�ned, at the origin). Note that the x-factor reverses 
ow
direction in the unstable sliding region in the desingularization, and that orbits in FS

can reach the origin in �nite time. These facts are usually indicated byadding the term
\folded" to denote the origin as a \folded-node", \folded-saddle" , etc. (degenerate
cases arise at the marginal parameter valuesab+ 1

4 c2 = 0 and abc= 0, but these are
nongeneric); see [23, 27]. Thus we arrive at two generalizations of the simple canard
(�gure 16(a)) in three dimensions, shown in �gure 17(a)-(b). Bot h cases require that

the Jacobian matrix
�

c b
a 0

�
of the desingularised sliding vector �eld (x _x; x _z) has
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two eigenvectors in the sliding region, which is satis�ed ifc2 + 4 ab > 0 and

�=" >
�

c +
n

2ab=
�

c �
p

c2 + 4 ab
�o� 2

; (76)

which is found by requiring that the righthand sides of (74), for the di�erent signs
in (74a), both point towards or both away from the switching manifold h = 0. The
simple canard, �gure 17(a), arises from the saddle-like sliding vector �eld ( ab > 0).
A robust case, �gure 17(b), arises from the attractive node-like sliding vector �eld
(c < 0, ab < 0, c2 + 4 ab > 0), and is so-named because a whole one-parameter family
of canard orbits exist.

These were classi�ed from piecewise-smooth systems theory in [16],in which a
third type of canard was introduced. Notice that, in �gure 17(a)- (b), one vector �eld
curves towards the switching manifold (alongT2) while the other curves away from
it (along T1). This is the situation so long as (ab � � 2="2)2 > c 2� 2="2, and hence
is always true if �=" is su�ciently small. More generally, however, the vector �elds
could both curve towards the manifold (if c�=" �

�
ab� � 2="2

�
< 0) or both away

from it ( c�=" �
�
ab� � 2="2

�
> 0). Canards are possible in both cases, but only in

the latter case can they depart the switching manifold in such a way that they can
form one-parameter families of periodic orbits { these are the only ones of interest
for canard explosions. The canard arises when the sliding vector �eld is saddle-like
(ab > 0) with only one eigenvector in the sliding region ((76) is satis�ed for only one
of the signs� ). This we call the visible case (�gure 17(c)), and generalises the visible
canard from �gure 16(b).

Figure 17 illustrates the phase portraits around the \sliding canards" that are
generic in piecewise-smooth systems. Consider the orbits marked? to be local
segments of periodic orbits, and allow their inset to change as a parameter varies
(similar to �gure 16, but this time the local vector �eld does not chan ge with the
parameter). Then observe that when a periodic orbit deforms such that it passes
through a double tangency point, it �rst forms a canard, and then, because its local
curvature changes discontinuously, the periodic orbit will be destroyed. These belong
to a larger class of four discontinuity-induced transitions called \catastrophic sliding
bifurcations" [16], the fourth of which we omit since it does not involve a canard.

Figure 17 thus provides a classi�cation of piecewise-smooth canards in three
dimensions. Furthermore, in [16] it is shown that these form a classi�cation in Rn

for n � 3. It is interesting to remark that the local sliding vector �elds which give rise
to this classi�cation appear already in Filippov's seminal text on piecewise-smooth
systems [9]. Figure 16 provides their extension to planar systems, and in sections
4.1-4.3 we showed that piecewise-smooth systems, derived from slow-fast systems by
the pinching method of section 3, typically exhibit the canard types classi�ed above.

A note of caution must be given on the unfortunate terminology that has
arisen for this same singular point, in the di�erent �elds of singularly p erturbed
and discontinuous dynamical systems. The singularity lying at the origin of (73),
namely a non-hyperbolic point on a slow manifold, is called afold (and in a addition
a folded-node, folded-saddle, etc. depending on the slow dynamics), see e.g. [23]. The
corresponding singularity lying at the origin of (74), namely a quadratic tangency of
a piecewise smooth 
ow to both sides of a switching manifold, is known as a two-fold
singularity, (this is because a quadratic tangency to only one side ofthe switching
manifold is known as afold), see e.g. [17].
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6. Concluding remarks

In this paper, we revisited the canard phenomenon in singularly perturbed dynamical
systems, showing a close geometrical link between nonstandard analysis and piecewise-
smooth methods. We �rst reviewed the exponential microscope approach of Benô�t et
al. [1], which allows the dynamics associated with a canard explosion to be resolved
locally. We then showed that similar results can be obtained in the framework of
piecewise-smooth dynamical systems using the concept of pinching. The exponential
microscope renders the vector �eld almost vertical close to the critical manifold,
providing an obvious choice of pinch zone, and we analyzed the parameter values
where canards and maximal canards occur. We also applied these techniques to a
three-dimensional burster, the Hindmarsh-Rose system, to analyse the transition from
basic canard cycles to canards with one spike. The same mechanism can be found in
other three-dimensional bursters (such as the Morris-Lecar equations [25]) and has
been recently studied from the standpoint of invariant manifolds, in particular, slow
manifolds of saddle-type and their (un)stable manifolds [11]. We haveshown that
pinching can be used to study the transition from canard cycles to spiking periodic
attractors.

The method of pinching introduced in section 3, and applied to canards in sections
4.1-5, can be used more generally to approximate singularly perturbed systems by
piecewise-smooth vector �elds. In particular, we have used it to describe the dynamics
around non-hyperbolic (fold) points of critical manifolds, where the Fenichel theory
of normally hyperbolic invariant manifolds breaks down. This is an alternative to
blow-up methods, which focus on regaining hyperbolicity by introducing an extended
system.

Pinching can be seen as the converse to regularization, where a piecewise-smooth
system is smoothed out at the switching manifold. It has been shownonly recently, in
[24], that the regularisation of a piecewise-smooth system is topologically equivalent to
a singularly perturbed system, and that sliding orbits are homeomorphic to dynamics
on a slow manifold. This result assumes normal hyperbolicity of the slow manifold,
and therefore does not yet apply in the neighbourhood of non-hyperbolic points, such
as those giving rise to the canards we are interested in (the resolution of this will again
require blow-up methods). Ongoing and future work include the study of how well
pinching can capture the full range of canard phenomena inR3, such as mixed-mode
dynamics [22, 20], small amplitude oscillations near the fold [5], and spike-adding
mechanisms [11].

Complementing this use of 
ow curvature to characterise canards, is the
classi�cation of canards derived from piecewise-smooth (or pinched) systems in
�gure 17. A canard occurs where regions of stable sliding and unstable sliding meet
at a point. The dynamics in a stable sliding region is non-unique in reverse time,
while the dynamics in an unstable sliding region is non-unique in forward time (recall
�gure 5(b)). When the two come together, orbits can be channeled from stable to
unstable dynamical regions, creating the enormous sensitivity to initial conditions
responsible for the suddenness of a canard explosion.

Appendix: Proof of Lemma 5.1

Given the system in (34),

" _x = W [1=" ] + "
 0(x)
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_W = W [1� 1
" ]

�h
W [1=" ] + "
 0(x)

i �
(1 � x2) � "
 2

0 (x)
�

+ ( q � x)"
�

;

we di�erentiate along an orbit,

dW
dx

= "(h � "
 0)[" ]� 1 (h0(x) � "
 0
0(x)) (77)

= "W 1� 1
[ " ] [h0(x) � "
 0

0(x)] (78)

where

h0(x) =
_h
_x

=
"(q � x) + h(1 � x2)

h
=

"
h

(q � x) + 1 � x2: (79)

To �nd 
 0
0(x), note that "
 0 is a solution of (34) whenq = q0, so

"
 0
0(x) = h0(x)jq= q0 =

1

 0

(q0 � x) + 1 � x2: (80)

Substituting the di�erence between (79) and (80) into (77), we have

dW
dx

= "W 1� 1
[ " ]

�
"
h

(q � x) �
1

 0

(q0 � x)
�

(81)

and straightforward manipulation of the term in square brackets gives

[�] =
�

1

 0

�
"
h

�
x +

�
"
h

q �
q0


 0

�

=
�

1

 0

�
"
h

�
(x � q0) +

�
"
h

q �
q0


 0

�
+ q0

�
1

 0

�
"
h

�

=
h � "
 0


 0h
(x � q0) + "

q � q0

h

=
W 1=[" ]

" _x

�
x � q0


 0
+ "

q � q0

W 1=[" ]

�
: (82)

Finally, substituting this into (81) we have the result of Lemma 5.1,

_W = _x
dW
dx

= W
�

x � q0


 0
+ "

q � q0

W 1=[" ]

�
: � (83)
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