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Abstract. In multiple time-scale (singularly perturbed) dynamical s ystems,
canards are counterintuitive solutions that evolve along both attr  acting and
repelling invariant manifolds. In two dimensions, canards result in periodic
oscillations whose amplitude and period grow in a highly non linear way: they are
slowly varying with respect to a control parameter, except f or an exponentially
small range of values where they grow extremely rapidly. Thi s sudden growth,
called a canard explosion, has been encountered in many applications ranging

from chemistry to neuronal dynamics, aerospace engineerin g and ecology. Canards
were initially studied using nonstandard analysis, and lat er the same results were
proved by standard techniques such as matched asymptotics, invariant manifold

theory and parameter blow-up. More recently, canard-like b ehaviour has been
linked to surfaces of discontinuity in piecewise-smooth dy namical systems.

This paper provides a new perspective on the canard phenomen on by showing
that the nonstandard analysis of canard explosions can be re cast into the
framework of piecewise-smooth dynamical systems. An expon ential coordinate
scaling is applied to a singularly perturbed system of ordin ary dierential
equations. The scaling acts as a lens that resolves dynamics across all time-
scales. The changes of local curvature that are responsible for canard explosions
are then analyzed. Regions where di erent time-scales domi nate are separated
by hypersurfaces, and these are pinched together to obtain a piecewise-smooth
system, in which curvature changes manifest as discontinui ty-induced bifurcations.
The method is used to classify canards in arbitrary dimensio ns, and to derive the
parameter values over which canards form either small cycle s (canards without
head) or large cycles (canards with head).
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1. Introduction

This paper revisits the geometry of dynamical systems exhibiting ré&axation
oscillations. Extreme changes of ow curvature brought about by the presence of
di erent time-scales are studied. After discussing previous appraches, we introduce
new methods to characterize these changes. We show that a cespondence exists
between certain singularities of current interest in two di erent kin ds of dynamical
system: those that are singularly perturbed [18], and those that & piecewise-smooth
[9].

A system with two time-scales can typically contain regions of fast dyamics,
evolving rapidly towards lower dimensional manifolds where regimes a$low dynamics
take over. The stability of a slow manifold depends on it being hyberbtically
attractive in its normal direction [7, 8, 18, 19]. The occurrence ofnon-hyperbolic
points leads to the separation of the fast and slow dynamics becominindistinct.
This is well-known to generate such nontrivial behaviours as relaxdbn oscillations
and canard explosions [28]. The term \canard" alludes to the duck-lile shape of
cycles that wrap around critical manifolds of a typically cubic form (look ahead to
gure 2 panel 2), but also to the deception they play on the mathematician by their
sudden appearance and disappearance. The explosion is a cascadecycle growth
that occurs in a parameter range that is exponentially small in the raio between
time-scales (a small parametet'), implying that it is very di cult to observe either in
practical or numerical situations, hence it could easily be construd as a discontinuous
event. How small the time-scale ratio (') must be for this to occur is addressed in a
related paper [6]. In this paper we show how such a discontinuous dessption can be
derived, and still preserve su cient geometry to capture the canard phenomenon in
detail.

An extreme view of a slow-fast dynamical system can be taken by gxessing it
in terms of ordinary di erential equations containing discontinuities. A vector eld
de nes evolution throughout phase space, but its value can jump @continuously
across a surface called a switching manifold. In the systems we will osider, orbits can
slide along the switching manifold in a manner that approximates the slev dynamics,
while fast dynamics takes place outside the switching manifold. The caventional
description of dynamics in piecewise-smooth vector elds was laid dowby Filippov [9].
We will rederive Filippov's convention by di erent means, de ning it as a piecewise-
smooth union of vector elds of the fast and slow subsystems, cobrined with a map
that “pinches' phase space in the neighbourhood of the critical mafold. The pinching
creates a hypersurface, the switching manifold, and the slow dynmaics slides around
inside it.

The pinched system compresses the cascade of cycles in a canaxglesion into a
single instant. We make a precise connection between this pinching fmalism and
the methods of nonstandard analysis applied to singular perturbaibn theory [1].
We begin by combining pinching with the nonstandard concept of an eponential
microscope, and we show that approximations obtained by both metods are
equivalent. Furthermore, an observation from [1] allows us to makesuccessive
approximations that separate the canard explosion into two cascdes { one with small
cycles (\canard without head") and one with large cycles (\canard with head") { each
of which is instantaneous in the pinched system.

We demonstrate the pinching method on a classic example of a slowgasystem,
namely the two-dimensional van der Pol oscillator [26]. We then apply [inching to a
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system with two fast variables and one slow, which allows for oscillatioa on the fast
time-scale observed as \bursting" oscillations. This is the classical khdmarsh-Rose
burster [13], where a spike-adding mechanism takes place and is omgjaed by saddle-
type canard cycles. The same mechanism can be found in other theedimensional
bursters (such as the Morris-Lecar equations [25]) and has beercently studied from
the standpoint of invariant manifolds, in particular, slow manifolds of saddle-type and
their (un)stable manifolds [11]. We demonstrate that, by using pincting microscope,
one can understand the transition from canard cycles to spiking peodic attractors,

that is, limit cycles with one spike.

The systems we analyse can all be expressed in the form

"x+ xf AX) = g(x;y;2); (1)

where " is a small positive constant, andf ° is the x-derivative of a smooth function
f, which is a cubic polynomial in x. The function g depends onx, and on a variable

y="x+f(x); (2)

and may depend on a third dynamic variablez. We can then write (1) as a system of
ordinary di erential equations,

"x=y  f(x); (3a)

y =9(xy;2z); (3b)
from which it is clear that, for * 1, the dynamics will separate into a slow time-scale
t and a fast time-scalet=". In cases where we have a third equatioz = k(x;y; z), the
dynamics of z may have either a fast or slow time-scale; the example we consider in
section 4.3 falls into the rst category.

The paper is arranged as follows. In section 2 we introduce some ckis canard
theory based on singularly perturbed systems, including the nonstndard analysis
concept of an exponential microscope. Then in section 3 a descriph of canards
in terms of pinched (or piecewise-smooth) vector elds is introduce, and applied to
examples in section 4. In sections 4.1 and 4.2 we consider supercriti@d subcritical
cases of the van der Pol oscillator, the latter representing an alisact form of the
Fitzugh-Nagumo equations, and in section 4.3 we apply the method tadescribe the
birth of spiking via canard cycles in a three dimensional Hindmarsh-Ree model. In
section 5 we apply pinching to derive a piecewise-smooth descriptiorf aon-hyperbolic
singularities and some of their related canards. Some concluding rearks are made in
section 6.

2. The classic canard example

2.1. The van der Pol equations in the Lenard plane

Results in this section derive from the seminal paper on canards pudished by the
French group from Strasbourg in the early 1980's [1]. Thoughout, hey consider the
equations of the van der Pol oscillator, which can be written as

"X =y %xs + X; (4a)
y =49 X (4b)

in the Lenard plane (x;y) [21], with constant forcing q and singular perturbation
parameter 0<" 1.
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The system (4) exhibits a supercritical Hopf bifurcation as q passes through
g= 1, thatis, a stable focus-type equilibrium loses stability by creation d a stable
periodic orbit. The location of the small parameter" in (4) distinguishes the nullcline
x_ = 0, which we label Sy and call the critical manifold. It consists of attracting
and repelling branches,S? and S", adjoined at the turning points (or folds) of Sg, at
(x;y)= (1; %), suchthat Sp= S?[ S'.

Let us rst consider how the critical manifold organises the dynamics of the
system for" = 0, illustrated in gure 1. Setting " = 0 in (4) gives a di erential-
algebraic system consisting of the di erential equationy = q x on the slow time-
scale, constrained toSy by the algebraic equationy = x3=3 x. HenceS is the phase
space of this limiting problem, called the \slow subsystem" (or sometines \reduced

system").
fast ber /
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Figure 1. Fast and slow subsystems of the van der Pol equation. Double a rrows
indicate a fast motion. The fold points of the critical manif  old Sp correspond to
the bifurcation points of the fast dynamics; they separate t he attracting sheets
S@ of the critical manifold from the repelling sheet S'.

To study the fast subsystem one introduces a fast time-scale = t=". Denoting
di erentiation with respectto by a prime, (4) becomes

xP=y %xs + X (5a)

y'="(a x): (5b)
When " = 0, the slow variable y has its dynamics frozen, that is,y remains constant
and can be considered as a parameter. This yields a family of one-vable di erential
equations on the fast time-scale, parametrised by and usually referred to as the \fast
subsystem" (or sometimes \layer problem™). The full system with " = 0 is piecewise-
smooth, with a switch occurring between the fast and slow subsygims. From (5a)
we observe that the y-parameterized) equilibria of the fast subsystem belong to none
other than the critical manifold Sp, being stable onS2 and unstable onS' (indicated
by the lled and un lled disks in gure 1).

The aim in this paper, as in singular perturbation theory, is to build from this

insight on the limiting case " = 0 to study what happens when" is small but nonzero.

Here we recount the main results, summarized in gure 2, which show a simulation
of (4) for " =5 10 3. If an initial condition is taken a distance of O (1) away
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from the critical manifold Sy, the solution of the van der Pol equation rst evolves
on a fast time-scale, almost horizontally, until it reaches an"-neighbourhood of one
of the attracting sheets S2. This rst epoch is well captured by the fast subsystem
of horizontal bres in gure 1. Once in the neighbourhood of S?, wherex 0, the
slow subsystem begins to dominate the dynamics and the orbit moveslowly, close to
S&. The sole event that can end this slow epoch is a loss of normal stabilitof the
attracting sheet S? of the critical manifold. This corresponds to a bifurcation point
of the fast subsystem, generically a saddle-node bifurcation, anthkes place at either
of the folds in gure 1.
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Figure 2. Canard explosion in the van der Pol system. The central panel (a)
shows the bifurcation diagram of this system as a function of the parameter g
(L2-norm jj jj of the limit cycle on the upper branch, and equilibria along t he
lower branch, unstable on the dashed part to the left of HB ). The quasi-vertical

part of the branch of limit cycles corresponds to the canard e xplosion. Five dots

(other than the Hopf point HB) are marked along the branch: 1 is a stable
equilibrium solution and 2 to 5 are periodic solutions, of which 2 to 4 are
canards and 5 is a relaxation oscillation. The ve solutions are represen ted in
the state space (x;y) in the outer panels, together with the cubic nullcline  Sp.

A simple stability analysis of (4) reveals a uniqgue xed point wherex = y =0,
which lies on Sy for all g. For jgj > 1 the xed point is stable and lies on S?, for
jg < 1 it is unstable and lies onS'. When q = 1, the system undergoes a Hopf
bifurcation which takes place at the fold of Sy, creating a branch of stable periodic
orbits that displays the so-called \canard explosion”. A surprising property of the
canards becomes clear when one plots orbits for various values gftogether with
the critical manifold Sp in the Lenard plane. As shown in gure 2, a periodic orbit
follows the attracting sheet S? of the critical manifold down to the fold point, then,
counterintuitively, instead of being ejected at the fold along a fast bre, the orbit
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sticks to Sp along its repelling sheetS" for an O(1) time.

The family of canard cycles are distinguished as being \with head" or without
head" as in gure 2. The distinction depends on whether an orbit leaes the "-
neighbourhood ofS" along a fast bre moving to the left (with head) or to the right
(without head) as depicted. The intervening case occurs at a panaeter value q= ¢
and is called themaximal canard, shown in panel 3 of gure 2. The maximal canard
follows the unstable region for the greatest time possible by travelig the whole length
of S" between the folds. The value ofgy can be estimated numerically or calculated
analytically using asympotic expansions in" (e.g. [2]), and in section 4.1 we estimate
it geometrically.

To understand why the canards stick to the repelling critical manifold S', it is
usual to consider them from the viewpoint of invariant manifolds. In the singular
limt " = 0, Sp is an invariant manifold. The question of the persistence of
invariant manifolds for " > 0 was addressed in the 1970's in the work of Hirsh, Pugh
and Shub [14] and, in the context of slow-fast dynamical systemsin the work of
Fenichel [7, 8]; see also [18, 19]. Fenichel proved that compact noatly hyperbolic
subsets of an invariant manifold, such asSy in the present case, persist as locally
invariant manifolds S+ (generally non-unique) for every small enough' > 0, and that
they are smooth"-perturbations of the unperturbed manifold. Normal hyperbolicity
can be lost, however, as happens generically at (isolated) fold poistin planar systems,
where attracting and repelling sheets of invariant manifolds interset. Therefore, in
the case of the one-dimensional cubic critical manifoldSy, one can apply Fenichel
theory everywhere except the fold points.

The key to the canard explosion is the fact that a small parameter bange can alter
the arrangement of the attracting and repelling branchesS? and S' of the invariant
manifold S-. Speci cally, the size of a canard cycle is determined by whether the
arrangement of S? and S forces it to curve inside the critical manifold Sg ( gure 3(a))
to form a canard without head, or outside it ( gure 3(c)) to form a canard with head.
Since the two invariant manifolds exchange their position between aqres 3 (a) and

(@) (b) (©)

q=0.995 =0.05 qA 09934909325 =0,05 q=099  =0.05
0.55 — 0.55

Figure 3. Invariant manifolds in the neighbourhood of the fold during  the canard
explosion. Showing the attracting and repelling invariant ~ manifolds S# and S',
and the critical manifold Sp = S2[ S', for di erent values of g. In (a), S& curves
inside S' allowing for a small canard cycle; in (b), S& and S' coincide; in (c), the
two manifolds have exchanged their positions and the result ing periodic attractor
is a large canard cycle.

(b) as q varies, there must exist a parameter valueg = ¢ at which they pass through
each other. Then, as the manifolds are themselves orbits, they nat coincide as shown
in gure 3(b). The canard that passes from S? to S! will remain on the repelling sheet
S' for the longest distance possible, creating the maximal canard shen in panel 3
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of gure 2. The strong (exponential) repulsion in the normal direction from S’ causes
the transition between small (without head) and large (with head) canard cycles to
occur within an interval of qthat is of order e " for somec > 0. This implies that
it is not trivial to resolve di erent canard cycles, because their repelling segments
are all contained in an exponentially small thickness aroundS". In order to obtain
quantitative as well as qualitative information about the canards along the explosive
bifurcation branch, changes of coordinate were introduced in [1] hat magnify the
geometry close toS'", such that di erent canards within the same subfamily (i.e. with
or without head) can be separated. The crucial point is that this magni cation must be
exponentially strong in " in order to distinguish between orbits that are exponentially
close to each other, as we show in the following section.

2.2. Exponential microscope

To understand relaxation oscillations in more detail we must separa¢ the canard
cycles, gure 2, from the critical manifold, Sp. We follow [1] by de ning a new variable,
v = X, which has the e ect of stretching the phase portrait by a factor of 1=" in the
direction transverse to Sp. In the (x;Vv) plane, (4) becomes

X=V; (68.)
"v=q x 2 v (6b)

The dynamics in these coordinates is somewhat changed in appearea however it
is clear that there is a one-to-one correspondence between orbibf the van der Pol
system in the Lenard plane (x;y) and in the phase plane §;v). In these coordinates
X is a slow variable compared tov, so the slow dynamics is organised around a critical
manifold v = 0, (in place of Sy which is now the v = 0 axis), given by

S =f(xv) : v= (x)g; where (x) H: (7)
The change to coordinates X;v) implements a magni cation transverse to Sp by
a factor ". Although this separates the canard cycles fromSy (as we shall see in
section 4.1), it is not strong enough to separate canard cycles fro each other, and in
particular cannot resolve the maximal canard. To this end, Benotet al. introduced
an exponential microscope For this stronger magni cation we must do better than
zooming in on Sp. As observed in [1], the maximal canard can be approximated near

the fold by S, when q = 1, which by (7) is given the hyberbola v = ¢(x) e
Thus the required “microscope’ variable is de ned as
w=(v o) 8

employing the notation
L j xjPsgn(x) 9)

which will recur throughout the paper. As was found in [1] (and we ralerive in

section 4.1) usingw = 2 4 and letting =(q )!'), we now have

x = wit=T+ (10a)

|
=
w=w %, _ : (10b)
0 W

recalling that ¢ is de ned as the parameter value for which the canard is maximal
(gure 2 panel 3).
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The term w ( =w)[1:"] is a perturbation of the = 0 (maximal canard) system.
It is small for jwj , Where the perturbation is negligible, but in the strip jwj
this term dominates and the vector eld is almost vertical. The illustra tion of this in
gure 4 is based on the original analysis in [1], which can be summarizedsafollows.

@) (b) (©)

1 1
0.5 h 0.5 0.5
0 0

o

.05 . h .05 ﬁ} .05

o1 / . o1 /
o1 0 1 x 2 o1 0 1 x 2 1 0 1 x 2
Figure 4. The van der Pol system under the exponential microscope: (&) ¢ < qo,
(<0),(0) a=aq ( =0),() g>qo,( > 0).

[y

In the parameter regime of the canard explosion, asymptotic analgis reveals that

= q @ = exp( c=") for a constant ¢ > 0, guaranteeing that 1. At the
parameter value g = ¢y, when the canard cycle is maximal, (10) reduces to

x = wit=l; (11a)

w = WX 0'O: (11b)

0
Noticing that ¢ lies in an "-neighbourhood of unity, and that canard orbits are
exponentially close to the hyperbolav = ((x) near the fold, we can approximate
the system as

1
X Tt x (12a)
w. w(x 1(x+1): (12b)

System (12) is integrable, and provides the following approximation ér the solutions
of system (11),
x4 x3 %

4+ - .
w K exp 7 3 > X (13)
where K is a constant. In gure 4 we show the phase portrait given by (13) atside
the strip jwj > . Inside jwj , the phase portrait is approximated by vertical bres

with a direction given by the sign of . When we discuss the method of pinching
in section 4.1, we will show how keen an insight this was, with computed lpts that
reveal just how sharply the vector eld changes between the stip's exterior, jwj > |
and its interior, jwj <

3. Pinched dynamical systems and sliding

In this section we introduce a piecewise-smooth formulation of multipe time-scale
systems, obtained by a method called pinching. We will use this later tocomplement
and extend the analysis in section 2.2. The method of pinching has itsr@ins in [3],
where it was used to overcome the lack of uniqueness of orbits in Filipggv's description
[9] of piecewise-smooth dynamical systems.

Consider a smooth vector eld F : R" 7! R", and the dynamical system

x = F(x): (14)
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Let there exist a smooth scalar functionh : U 7! R on an open regionU R", such
that r h 6 0 everywhere onU. Let h have two level sets labeled

=fx2R":h(x)= g (15)

forsome > 0, bounding a stripjhj <  which we call the pinch zone (For motivation,
consider the pinch zone to be the strip of quasi-vertical ow,jwj < ,in gure 4). We
shall denote byh the Lie derivative of h along the ow of (14),

d :
h=x &h(x)— F rh (16)

We wish now to approximate the solutions ofx = F in the pinch zone by some rule
that: (i) associates each point on . with a point on , and (ii) replaces the vector
eld between them by a suitable approximation.

In the local region U, we can de ne a surjective map from the pinch zone
jh(x)j < , to a switching manifold R" 1. We do this by choosing bresx = p ()
that connect the two boundaries .+ and , given by

fx=p():p@1)2 +;p( 12 ; 1< < 1g; (17)
so that each bre is associated with (or projected onto) a unique pint 2 . Two
such bres are illustrated in gure 5(a). The vector eld on is then the set

F=fF(p(): 1< < I1g: (18)

For simplicity we assume that, for any , the setF contains at most one vector that
is tangent to a level set ofh; we call this a sliding vector, and denote it as
n 0

Fs()= F(p(): b ()=0;jj<1: (19)

We label the hypersurfaceh. = 0 as S. For Fs to be unique one must have that, for
a given , the chord p ( ) is never tangent to S, hence we choosg@ such that the
derivative @=@ is non-vanishing, which we can write as the condition

@ _@ ()
M ()= =g

Moreover, if F( ) contains a sliding vector, Fs( ), then we describe as asliding
point, otherwise it is a crossing point. Over any open region of sliding points, the
sliding vectors form ann 1 dimensional vector eld, and thus de ne a dynamical
system on given by

= Fs(): (21)
Orbits of the pinched dynamical system are de ned as the concateation of:

r (F(x) r h(x)) 6 0: (20)

(i) solutions of equation (14) in the regionsh(x) > and h(x) < , and
(i) solutions of equation (21) on .
The following theorem follows directly from (19)-(21).
Theorem 3.1. (a) The boundary between crossing and sliding lies where is
tangentto . or . (b) Zeros of F inside the pinch zone correspond to zeros of the
sliding vector eld Fs( ), which we callsliding equilibria.

Taking h as a local coordinate, a vector eld for the pinched system is obtaied
by making a piecewise-smooth coordinate transformatiorh 7! i1, where

h=h sgn(h) for jhj>; Hh=0 for jhj : (22)
We say that the sliding region is:
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(b)

F())

Figure 5. Pinching, and the origin of sliding. (a) A smooth vector eld F, and
a pinch zone bounded by , which are joined by bres p ( ). The set-valued

vector eld F( ) is shown on bres corresponding to a sliding point 1 and a
crossing point 2. Sliding is determined by the positioning of a tangency surf ace
S (where h = 0), on which we take the sliding vector Fs. Above and below
the pinch zone the vector eld is approximated by F . (b) The pinched system

around a switching manifold , obtained by pinching togethe r 4+ and A
tangency of F4+ to bounds sliding (right of  S) and crossing (left of S) on .

stable if h(p (+1)) > 0> h(p( 1; )) (orbits ow locally towards ), and
unstable if h(p( 1; )) > 0> h(p (+1)) (orbits ow locally away from ).

The intersection of S with is the locus of points whereF is tangent to . or
. It is this intersection that partitions into regions of sliding or cros sing, so the
domain of sliding is given by S\f x : jh(x)j < g:
Figure 5 illustrates how the dynamics of a smooth system (a) is appimated,
after pinching, by a piecewise-smooth system (b). Orbits that cr@s both boundaries
of the pinch zone in the same direction in (a), are approximated by obits crossing
the switching manifold in (b), while orbits that cross the boundaries in opposite
directions in (a) give rise to sliding on the switching manifold in (b). Also illu strated
is the content of theorem 3.1, showing that the boundary betweercrossing and sliding
is a tangency between the ow and the pinch zone boundary in (a), orresponding
to tangency between the ow and the switching manifold in (b), and showing that
an equilibrium inside the pinch zone in (a) is approximated by an equilibrium in the
sliding vector eld in (b).

3.1. Filippov's sliding vector eld

Equation (21) requires knowledge of the exact form of the vectoreld F inside the
pinch zone, but in many circumstances a further approximation is ugful. Recalling
that F is the set of values ofF (x) along the bre p ( ), we can approximate it with
a convex setF , which is an interpolation between the values ofF at the endpoints
p ( 1). Expressing these endpoint values af ( )= F(p ( 1)), we thus have

F (): 1< < 1 : (23)

This is precisely the convex combination of two vector eldsF used by Filippov
[9] to de ne sliding on a switching manifold. A sliding vector, which lies on the
hypersurface S, is a vector F 2 F that satises F r h = 0. Assuming that



Canards and curvature: nonsmooth approximation by pinchig 11

rh(p (+1)) r h(p ( 1)), thisoccursat = g, where
_(F +Fs) rh
ST(F F.orh

and therefore the sliding vector eld is given by
(F rhF. (F+ rh)F
(F F+:) rh

This is formally identical to Fillipov's sliding vector eld, and provides us w ith a
piecewise-smooth dynamical system

< Fi; if h(x)>;
x=_ Fs; if jh(x)j<; (25)
F ; if hx)<

How well (25) approximates the smooth system (14) clearly deperslon how the pinch
zonejhj < is chosen. For a slow-fast system such as the van der Pol oscillator
(4a) with small ", we can choose the pinch zone to be a neighbourhood of the critical
manifold Sp. Importantly, the interesting quantities we calculate in later sections
depend on the geometry ofS, which itself depends on the choice of “pinch function'
h, but not on the width of the pinch zone

We will now apply pinching to take a fresh look at some familiar examples bthe
canard phenomenon, before using it to derive a classi cation of caards in section 5.

Fs = (24)

4. Applications of pinching in 2 and 3 dimensions

4.1. Pinching and sliding in the van der Pol oscillator

In this section we use the pinching formalism to analyse canards in theyan der Pol
oscillator. In gure 6(a) we illustrate a relaxation oscillation simulated from (4) for
" =0:04. The critical manifold Sy is given by h =0, where

h(x;y) =y :—3Lx3 + X (26)

Figure 6. Simulation of (4) for " =0:04 and g = 0:9, showing the same relaxation

oscillation (bold) in four coordinate systems: (a) the Le nard plane (x;y), (b)

the plane (x;h), (c) the exponential microscope ( x;V ), (d) the piecewise-smooth

system (x; V). The critical manifold, consisting of attracting and repe lling

branches S2 and S', is straightened to give (b), a pinch zone jVj <"" emerges
around it in (c), which is pinched to a switching manifold Vv =0 in (d).

If we vary the parameter g from the situation in gure 6(a), there will be no observable
change in the segment of periodic orbit lying on the attracting righthand branch of the
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critical manifold S?, prior to its sudden disappearance in a canard explosion (recall
gure 2). Thus we attempt to resolve di erent orbits by proceedin g along similar lines
to the exponential magni cation in section 2.2, but we choose to magify the Lenard
variable y directly instead of using the phase variablev = x; this has the bene t that

X remains the fast variable. First, we simply straighten out the critical manifold Sy
by taking h as a variable, giving the system,

"X = h; (27a)
h=q x (x? 1)2: (27b)

The relaxation oscillation from gure 6(a) is shown in the (x;h) plane in gure 6(b).
The critical manifold Sg is now the horizontal axis h = 0.

We now attempt to resolve canard orbits by magnifying the neighbouhood of Sp.
To do this we introduce a variable

v = ht' sgn(yjhj’; (28)
giving the system
"x o= Vi (29a)

v=V @ x»)+ VI ¥lg x)" (29b)

in which the same relaxation oscillation is plotted in gure 6(c). The critical
manifold Sp remains on the horizontal axis, V = 0, and is evidently no longer
a local attractor/repeller, but is surrounded by a region, approximately jVj < "'
(corresponding tojhj <" ), where the ow is quasi-vertical. To consider the dynamics
relative to this strip, we nd the nullcline \.=0 for V 6 0, given from (29b) by

S =f(xV)2R?: V= "(x g=1 x?) g (30)
This is shown in gure 7 for dierent values of q. The curve S, becomes singular

(@) . (b) . .. (© )
I V=0 — b >—— 1IV=0 V=0
1 D - 77;4::\> 1 /l — =~ 1 B 7‘:-» —_— 4_> —a
il e walSia e I%\\\l\ﬁ O s SR
N 4 |
v (AR
\ |
01— IR 0 ' T 14k
1 4 I
Al L
‘ g 1 T -—_;;:_ i S T ‘\\ Kg“‘*“"""‘\“— L
1 DY L Y 2T T~
o ;f,rjt:’,ﬁ;ﬂ 4 0 o —-— ﬁi =
: I ! s ‘ I
-2 | 0 x! 2 -2 0 x 2

Figure 7. Exponential microscope. Phase portrait of the van der Pol os cillator
in the (x; V) magni cation, for: (a) q<1,(b) g=qgv =1, (c) q> 1. The dashed
curve is the nulicline \.=0.

when (@QL=@x; @=@Y = (0;0), forming the cross seen in the lower right region of
gure 7(b), at a parameter q = q,. From (a) to (c) the nullcline Sy thus undergoes
a bifurcation [4] in the form of a saddle transition. Solving (@L=@x; @=@Y = 0
gives the coordinates of the singular point asX; V) =(q,; ("=2) ), and substituting
this into (29b) gives g, = 1, which therefore coincides with the Hopf bifurcation in
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the original system. The relaxation oscillation in gure 7(a) disappears in a canard
explosion between (a) and (b).

We now derive a piecewise-smooth approximation from (29) by followig section 3,
to arrive at gure 6(d). It is natural to choose a pinch zone jVj <" " (equivalently
jhj < ™), inside which the vector eld is near vertical. We will pinch along the V-
direction (setting p in section 3 aspx( ) = (x; " ")). The vertical bration of the
pinch zone by the ow implies that this is a good approximation to the dynamics. This
is equivalent to introducing a new coordinate as in (22), given by = V. ""sgn(V).
From section 3, sliding occurs atx values for which the nulicline S, (\. = 0) lies in

(@) . (b)

Figure 8. Relaxation oscillation in: (a) the ( x;V) magni cation, (b) the
piecewise-smooth system obtained by pinching the region jVj <" " in (a). Plotted
for the same parameter values as gure 6(a). Sp is the V = 0 axis, the dashed
curve is the nulicline \. =0 corresponding to h.=0.

the pinch zone. From (30), the sliding region is therefore given by

X q e e
1 x2 < )

on the switching manifold V¥ = 0. The sliding vector eld has an equilibrium at
X = g. The boundaries of sliding, where the vector eld is tangent to the svitching
manifold, are therefore wherejx ¢ = j1 x?j. The tangencies to the upper and
lower side of the manifold are labeledT; and T, respectively in gure 9. The critical
manifold Sy has become the switching manifold, with stable sliding corresponding
to the attracting manifold S?, and unstable sliding corresponding to the repelling
manifold S', as shown.

It is not necessary to calculate the sliding vector eld explicitly (though it is
easily found from (24)), as we can infer it qualitatively from two facts: rstly that the
stability of the sliding equilibrium (stable for jg < 1 and unstable forjgj > 1), and
secondly that, from (24), the sliding vector eld is equal to the upper vector eld at
T, and to the lower vector eld at T».

Inspection of the piecewise-smooth vector eld in gure 9(a) makes it clear that
a relaxation oscillation occurs because an orbit, sliding towardg, from the right, will
detach from the manifold at T,, pass through the manifold nearx = 1, and then be
re-injected into the sliding region from above. The bifurcation of the curveS, atq=1
causes the tangency points to collide in gure 9(b). Then the crosig region (dotted)
between T; and T, shrinks to nothing, and a canard orbit exists that passes from
the stable to unstable sliding regions (fromS? to S"). Every point on the unstable
sliding region S" belongs to a family of orbits that travel along S" for some time,

Vi= i x od<jl x%; (31)
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Figure 9.  Sketch of the bifurcation responsible for the canard explos ion: (a)
relaxation oscillation at q < 1, (b) the simple canards at q =1, (c) stable sliding
equilibrium at q > 1. The upper and lower vector elds are tangent to the
switching manifold at Ti1 and T, respectively. These bound the sliding regions
(horizontal lines) and crossing regions (dotted horizonta | lines). The black spot
is the sliding equilibrium, unstable in (a) and stable in (c) . S2 and S" label
the stable and unstable sliding regions, approximating sta ble and unstable slow
manifolds of system (29).

before departing into either the upper or lower half planes and beingeinjected into
S?; every one of these is a periodic orbit and constitutes an instantaeous “snapshot'
of the entire canard explosion. When the tangency points separa& in gure 9(c),
orbits in the righthand sliding region are attracted to the sliding equilib rium and no
periodic orbits are possible. Thus the bifurcation that takes place in gure 9 describes
the sudden disappearance of the relaxation oscillation, via the instataneous existence
of a family of canard cycles atq = 1. In section 5 we will classify this as the simple
canard case of acatastrophic sliding bifurcation.

Let us now show that the same method can split the instantg = 1 into two families
of canards: those in gure 9(b) that detach from the upper side d the switching
manifold (without head) and those that detach from the lower side (with head).

Whereas in gures 6 (a) and (b) the cycle (bold) appears to lie on an #racting
branch S2 of the critical manifold as it approaches the fold, we see from gure7(a),
in which S? lies on the axisV = 0, that the cycle lies instead on the curve\L = 0.
Let us therefore approximate the canard by the curveS, whenq= 1. Solving h=0
(equivalent to \L = 0) for q =1, from (27b), con rms the result that led to (8), that
near the knee ofSy at (x;y) =(1; 2=3), the canard is given by

n n 1 .
h o(x) Trx. (32)
To magnify the phase portrait around this curve in the h-direction we use a di erent

exponential scaling, introducing the variable

w=(h " o) (33)
and obtaining the system
<= 2w (0, (34a)
h i

W= jwit f oW o) (1 x%) " 2(x) +(g x)" :(34b)

The relaxation oscillation in the (x; W) plane is illustrated in gure 10(a). The focus,
which in the (x;V) plane resided inside the pinch zone, has now been lifted outside.
Compare this to gure 4(a), which is restricted to 1< x < 2 and a vertical range
that excludes the focus; the variableW di ers from the analysis of Benot et al leading
to (8) by a scaling W = ""w. Notice that the vector eld, while vertical in the region
given approximately by jWj <" 2", changes direction as it passes through the nullcline
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W = 0. As qchanges from (a) to (c) in gure 10, the nullcline segment inside the jinch
zone sweeps to the right, changing the vertical vector eld directon from downward
to upward.

: ] |W:0
L ~ e
VN OO
! l \ s‘ N N/
wo D
VI wlt &
L
PR A s
1 C‘L\ A\:ff - ~<:Lt\~l\\
-2 S0 ox 2

Figure 10. Second exponential microscope. Phase portrait of the van de r
Pol oscillator in the ( x; W) magnication, for: (@) g < qw, (b) 9 = aw, (c)
1>q9>q>W . The dashed curve is the nullcline \. = 0. Compare the region
x> 0to gure 4.

The nullcline W = 0 is given from (34b) by
( 2 X q . ")
Similar to the bifurcation of the nullcline S, at q= 1, the curve S,, becomes singular
at some parameterq = q,, forming a cross as shown in gure 10(b). This takes
place when @N=@x; @ =@V = 0, the solution of which gives the coordinates of the
singularity as |
32 '

20+ a) (W@ g2 )

and substituting these into W = 0 gives the bifurcation parameter q = q, as the
solution of

(36)

(XGW)=" au;

"= g+ g (37)

Similarly to the (x; V) system, we now de ne a pinch zone given byWj <" 2" in
which the vector eld is almost vertical. We pinch vertically, in this case by de ning
a new variableWw = W  "?"sgriW, and in the (x; W) plane we obtain a piecewise-
smooth system as shown in gure 11. We omit the details for calculatig the sliding
dynamics on the switching manifold W = 0, as the steps are similar to those for the
(x; V) system, and because the necessary information can be inferratirectly from
(34)-(35).

The vector eld is tangent to the switching manifold at the x-values where the
curve (35) enters the pinch region. We label themT; and T, for the tangency to the
upper and lower side of the switching manifold respectively. As illustraed in gure 12,
for g < qw, Ty lies to the left of T, with stable sliding to the right of T,. This allows
a periodic orbit to exist as simulated in gure 11(b) and sketched in gure 12(a). As
the nullcline W = 0 bifurcates, at q= q, given by (37), the two tangencies collide. A
canard orbit then passes from the stable to unstable sliding regionsand since every
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(b)

Figure 11. Relaxation oscillation in: (a) the ( x; W) magni cation, (b) the
piecewise-smooth system obtained by pinching the region jWj < " 2" in (a).
Plotted for the same parameter values as gure 6(a). The dott ed curve is the
nullicline W = 0.

point in the unstable sliding region belongs not only to an orbit in the sliding region,
but also to orbits departing into both the upper and lower half planes every one of
these is also a periodic orbit and constitutes an instantaneous “snapot' of a canard
explosion. This explosion is not the one observed in thex V) plane, gure 9, because
it terminates not in a stable focus, but in the small periodic orbit shown in gure 12(c).
This, instead, is a cascade between the canard with head in gure 12) and the canard
without head in gure 12(c). In section 5 we will classify this as the visible canard
case of acatastrophic sliding bifurcation.

) 2 >
(D Tz

Figure 12. Sketch of the bifurcation responsible for the transition be tween
canards with and without head: (a) a large cycle corresponds to the canard
with head at q = qv 10 4, (b) the visible canard at g = qw, (c) a small
cycle corresponds to the canard without head at q= qw +10 *. The upper and
lower vector elds are tangent to the switching manifold at f old points T; and
T» respectively; these exchange exchange ordering in the bifu rcation. S2 and S’
label the stable and unstable sliding regions, approximati ng stable and unstable
slow manifolds of system (34).

Previously we assigned the valueg) = ¢ to the maximal canard, which marks the
transition between canards with and without head. The bifurcation of the W. = 0
nulicline at q = ¢, signies a change in curvature of the ow, from pushing orbits
upwards to pushing them downwards relative to the maximal canardat W = 0.
Therefore g, gives us a geometrical approximation for the valueg = ¢y at which the
maximal canard occurs, = q,, and hence from (37) we obtain a quartic expression
for q:

=1 )+ ) (38)
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Thus the bifurcation in gure 12 controls the disappearance of a lage cycle
(gure 12(a)) to be replaced by a small cycle (gure 12(c)), via an instantaneous
canard cascade ag = q,.

For @ @ we can use an observation of [1] that led to (10b), namely that we aa
rewrite (34a) using the following result which is proved in the Appendix

Lemma 5.1 [1] The ordinary di erential equation (34b) can be rewritten as

1 p— X q) q q) LU

e R e (39)
Using this lemma, we can approximate forq ¢p su ciently small,

X o(x); (40a)

X O
W w——:—: 40b
o(x) (40b)

Replacing the lefthand side of (40b) with W = ld—\ﬁ‘(’ = (X)W d|%+w we can solve
to nd

W(x) W(@O)exp X 2q02 les %xs + %x“ (41)

as rst found in [1] and recounted in (13), except that here ¢ is included with the
value (38)) instead of approximation by unity. This gives an approximate expression
for the trajectories of canards in the regionjwj >"2".

This can be improved using the pinched piecewise-smooth system, t&use the
vector elds in the half planes W > 0 and W < 0 are independent. In particular we
can make independent approximations in either half plane. We linearizeabout the
equilibrium in the upper half plane, and expand for small W in the lower half plane
(where there are no equilibria), and also expand abouk =1, to obtain

_ %+ H (W)W E="=" (42a)
WooW (@ )+ HW)G @) 1 2wiT (42b)

whereH (W) equals 1 ifW > 0 and 0 if W < 0. This adds a correction to (40) outside
jWj>" 2" that captures the focus in the upper half plane, and captures theexchange
of tangency points responsible for the canard. Using the pinching mthod, we have
thus derived a piecewise-smooth system, (42), that captures # geometry behind the
canard explosion in gure 12 and extends the nonstandard analysisummarized in
section 2.2.

Let us brie y review what information about the singularly perturbe d system has
been captured by pinching. The exchange of tangency point3; and T, in gures 9
and 12 enacts a discontinuity-induced bifurcation { bifurcations of the periodic orbits
caused by interaction with the discontinuity at V = 0 or W = 0. These cases are
catastrophic forms of sliding bifurcations [16], whose classi cation we will present
in section 5. These sliding bifurcations in the (pinched) piecewise-snaih system
correspond to bifurcations in the topology of the nullclinesM. =0 and W =0 in the
smooth system, coinciding with the Hopf bifurcation and maximal carard respectively.
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4.2. Pinching and sliding in the Fitzugh-Nagumo equations

We now extend the analysis of the previous section, where an oscillat underwent a
supercritical Hopf bifurcation, to a case involving a subcritical Hopf bifurcation. As a

speci c example we take an abstract form of the FitzHugh-Nagumoequations [10] used
to model electrical excitations in nerve membranes. Written in terms of a membrane
voltage potential v and recovery variablew, setting f (v)= v3+ 1+ )v¥> v and

g = g(v;w) ane, these take the form

"V = V3+(1+ )V2 Y] w+ |; (433-)
w = hbv cw; (43b)
where ; ;1; are parameters andb; c;are constants. This is equivalent to (3) up to a
simple coordinate translation,
1+ I w 1+
= ; = —— f ; 44
=V o3 YT 3 3 (44)

giving (3) with f (x) = %x3 rx andg(x;y)=q px VY, to obtain
"X =y %xs + rX; (45a)

y =g px y: (45b)
The critical manifold Sy of this system is the curveh = 0, where

h(x;y)=y %xs + X (46)

The form of Sy depends onr, aBd we X r > 0 so that Sp has two turning points
(where f qx) = 0), at ( x;y) = (1, %). Throughout this section we will keep r
and p xed and vary q as a bifurcation parameter.

The dynamics depends upon the number of equilibria of (45). These azur at
(Xeqs Yeq) Where Xeq is a solution of%x§q+( P r)Xeq 0g=0. The number of solutions
depends on the discriminant = (3 g=2)>+(p r)3. If < 0 there are 3 equilibria,
and a stable cycle that can be destroyed by homoclinic connection ta saddle. In this
section we restrict attention to the simpler case with one focus, > 0, so we x

=3 g27+(p >0 (47)

The ow is illustrated in gure 13. A relaxation oscillation exists in (a). | tis
subsequently destroyed, but by a dierent process to that in setion 4.1. There is
a focus equilibrium which in (a) lies on the unstable branchS" of Sy. The focus
changes stability in a subcritical Hopf bifurcation, creating an unstable cycle as shown
(dotted) in gure 13(b). The unstable cycle undergoes a canard gplosion, and (b)
captures an instant in the sequence of canards. In this systemhe unstable canard
is without head and grows in amplitude, while the stable canard is with hed and
shrinks in amplitude. In (c), the two cycles coincide at a parameterq = ¢ to be
determined, and annihilate in a saddle-node bifurcation of cycles. Atg= ¢, the two
cycles coincide and we observe numerically that these are close to aamimal canard
(dotted). Afterwards, in (d), the cycles are destroyed, leavinga stable focus onS@.
We will not go into as much detail as the previous section, and insteageek only
to derive the mechanism by which the cycles are destroyed in gure 3(c), following the
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(d)

Figure 13.  Simulation of (45) for " = 0:04. Plots are with p=r =1 and q
values: (a) qo 0:02, (b) go 6:045 10 °, (c) qo, (d) go +0:02. The cubic
curve is Sp given by x = h =0, with attracting branches S2 and repelling branch
S". Stable (bold) and unstable (dotted) periodic orbits are sh  own around a focus
(spot). The maximal canard parameter o is to be determined.

same steps as in section 4.1. We rst straighten outSy by transforming to coordinates
(x; h), giving the system

"x=h; (48a)
b= o000+ = %0h; (48b)
in terms of the function
() hxa x)= 2P+ x+q (49)
and its derivative °(x) = r x2. The nullcline h.= 0 is the curve h = " (x),
where
(X) p(X)= 2(x): (50)

This nullcline bifurcates when @=@x= @=@h= 0. Solving these we nd that the
bifurcation takes place at coordinates

(x;h) = (Xn;hn) P "(;th) ;

(51)

and substituting these coordinates back intoh.= 0 we nd the bifurcation parameter
value to be

1
4= ch X +(P NxXn: (52)

This coincides with the value ofq at which an subcritical Hopf bifurcation takes place.
We can magnify the strip jhj <" by rescaling to a coordinateV = hl'l as in (28),
obtaining

"x = VI, (53a)
Vo= v 2+ vEET ) (53b)

then derive a pinched system to approximate it. The piecewise-smdb system
obtained at this level is identical to gure 9, that is, the unstable cycle belongs to
the in nite number of coexisting periodic orbits at g = ¢,, none of which can be
distinguished as either stable or unstable. As before, to distinguistbetween di erent
canards we must magnify around the maximal canard.
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The maximal canard, similarly to section 4.1, is found to lie on the curvegiven
by the nullcline h.= 0 when q= ¢,. We therefore let ((x) be the function (x) from

(50) with q= ¢,, and approximate the maximal canard byh " o(x), where
p(¥)th aqg_ 1 3p 2r "

The nullcline \L = 0 bifurcates at the same parameterq = ¢, as the nulicline h.= 0.
To magnify around this maximal canard curve, we rescale to a cooridate
W =(h " ox))I', obtaining

X = 2WETTs o), (55a)
W= Wit 000 OIWIET + o ()] + T a(x) (55b)
where §(X) =[2x o(X)+(p r+x3)=(r " x3):

The nullcline W = 0 bifurcates when @M=@x= @MY=@W= 0, which we solve
to nd the bifurcation coordinates ( x; W) = ( Xo; Wp). For the same reasoning as in
section 4.1, this bifurcation takes place approximately when the maimal canard is
formed. We nd that xg is a solution of

2(x0)  "fJ(x0)=0; (56)
which can be solved numerically, or expanded as a Taylor series to nd
Xo xnt BP0 (xe xn)? (57)

4 ")6r 7
and, exactly,
O(X ) ("1
p\"0 .
F Mqxo)  §xo)
Substituting these into W. = 0 we nd the bifurcation parameter gq= ¢ at which the
maximal canard exists to be given by

1
=36+ pPxo: (59)

Simulations in this case are similar to gure 11(a), except that they reveal an unstable
cycle around a stable focus as shown in gure 14(a) fog < qo. At ¢ in (b), the
tangenciesT; and T, of the upper and lower vector elds to the switching manifold
collide, allowing a canard orbit to pass from the stable to unstable slidig regions,
giving rise to a family of canard cycles. As for the supercritical van &r Pol system, we
have canards with head that depart from the underside of the ungable sliding region,
and canards without head that depart from the upper side, but nov these correspond
to the cascades of stable and unstable canards, one of which is tmaximal canard.
Afterwards, for q > o in (c), the piecewise-smooth system contains no mechanism by
which a periodic orbit can exist, as all orbits are attracted towardsthe stable focus.

Similarly to the supercritical van der Pol system, the bifurcation in t he pinched
system will be classi ed in section 5 as a visible canard case of catasiphic sliding
bifurcation. We could go on to consider similar systems, such as repting (45b) with
y = q px+ Yy, in which a supercritical Hopf bifurcation is followed by a canard
explosion that can be interrupted by a homoclinic connection to a sadle. In such
a case, it might be appropriate to perform an exponential magni caion around the
stable manifold of the saddle to determine when it becomes part of aanard. Instead
of considering further such extensions, let us now turn our attetion to canards in
three dimensions.

Wo= " o(Xo) (58)
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(a) (b) (c)
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Figure 14.  Sketch of the bifurcation responsible for the stable and uns table
canard explosions in the subcritical van der Pol system: (a) a stable cycle (bold)
with head and unstable cycle (dotted) without head at gq= gy 10 4, (b) a visible
canard exists at the maximal canard parameter g = o, (C) no periodic orbits exist

for q= go+10 4. The upper and lower vector elds are tangent to the switchin g
manifold at fold points Ti and T, respectively; these exchange exchange ordering
in the bifurcation.

4.3. Two fast variables in three dimensions: the HindmarsHRose burster

We now give an example of pinching in a three dimensional system. Unsprisingly
the analysis is more involved in three dimensions, and it is beyond the spe of this
paper to investigate such a system in detail. We give only a brief introdiction to
the analysis that can be carried out, taking the Hindmarsh-Rose egations [13] as an
example.

A slow-fast system inR® with two fast variables has a fast subsystem that is two-
dimensional. This allows for the possiblity of periodic motion in the fast dynamics,
which can induce bursting oscillations in the full system [15]. The Hindmash-Rose
equations are a classic example of a simple bursting system, and cam lwritten as

"x=z f)+ 1y, (60a)
y =s(x xi) v (60b)
"z=9(x) z; (60c)

wheref (x) = ax® bx? andg(x) = ¢ dx?. Herex represents a voltage variable and/
a slowly varying current, giving a slow-fast system of the form (3),to which we add a
fast variable z and applied current |, see [12] for more details. We take typical values
a=1 b=3,¢c=1, d=5 and s= 1:618, that are known to be physically relevant.
This model exhibits spiking behaviour. One can observe by numericaimulation
that periodic bursting attractors are formed by an alternation between rapid phases,
containing a number of spikes, and slow resting phases. Parametelependent families
of periodic orbits are known to exist and display a spike-adding phenmenon. In the
following we consider branches of periodic attractors obtained upo variation of I, but
a similar spike-adding phenomenon exists whet is xed and " is varied. At low |-
values, the unique stable equilibrium of the system undergoes a Hoifurcation where
a branch of stable periodic attractors is born at the point labelledys, in gure 15.
The Hopf point is located very close to one fold of thev-nulicline and the subsequent
periodic orbit follows the unstable (middle) branch of this cubic nullcline. Hence these
periodic orbits are of canard type and the phenomenon is reminiscerof a canard
explosion. For increasingl -values, the associated periodic orbit stays close to the
unstable branch for a longer time, until eventually it remains close lorg enough to
reach the upper fold point. This is consistent with the notion of a maxmal canard.
Shortly after this, as | increases, the associated periodic orbit starts to develop a fast
oscillation { a spike. Hence the spike's appearance is suggested to banard-induced,
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and it is found that the process repeats itself again and again, a$ increases, each
time adding an extra fast spike, as shown in gure 15.

Spw ./l ip
Zy / .

d

L N canad
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%=7=0
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y
z=0

Figure 15. Periodic attractors of the Hindmarsh-Rose model (60), for d ierent
values of the applied current |. The quadratic surface z = 0 is shown, and
contains the cubic curve Sp = S2[ ST, the family of equilibria of the associated

fast subsystem, which undergoes a Hopf bifurcation at the po int marked y = ygp.
A canard cycle without head is shown, and follows Sp. The cycle grows into
a maximal canard, developing a ’lip' as it passes over the fol d of the quadratic
surface. When the cycle grows beyond the Hopf point it leaves the surface and
grows a spike that winds around Sy via the fast subsystem.

We now demonstrate how the analysis of previous sections can be e by
applying the exponential microscope followed by pinching, to derive he birth of the
rst spike. For a general analysis of the spike-adding phenomenoiin terms of slow
manifolds of saddle type and the relative position of their (un)stable manifolds, see
[11].

Non-spiking cycles remain close to the parabolic surface = 0, so we begin by
considering only the dynamics therein. (A stronger case for this is Wen the fast
subsystem itself has two time-scales, so that (60) readix = i, y = i, "z = I,
with "1 "> 1, and we can restrict to the fast subsystem by setting', = 0. This
subsystem itself has slow-fast time-scales with ratid = "1=", 1. In e ect, the small
parameter" pushes the Hopf bifurcation point in the fast subsystem in the dire¢ion of
decreasingz. Recalling that the Hopf point initiates spiking, this causes the periodc
attractor of the full system to lose its burst, following instead a small oscillation via
the fast subsystem; such a periodic attractor resembles a candwith head where the
orbit leaves the vicinity of the repelling branch of the cubic nulicline and relaxes onto
the attracting branch by oscillating around it.)

Let us then begin by xing to the surface y = ¢ dx?, upon which the dynamics
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is given by
"x=c+l y ax+(b d? (61a)
y =s(x xi) v (616)

As for a planar system, we then straighten out the cubic curve whee x = 0 by
replacing y with the coordinate h = "x, obtaining

"x=h; (62a)

h = q(x)+h } a(x) 1 ; (62b)
where

x)=c+1 a+(b )x% (63)

The nullcline h = 0 bifurcates when 0 = h = @=@x= @=@h with solution
0= ¢(x)= %x) "="s+2h(b d) 2h"=x, giving

Xp = % 1 b d P (b d)?2 3a" ; (64a)

hy = "s=2IO (b d)2 3a% (64b)

Ih =axg (b dx2 I (64c)
At the parameter | = 1},, a Hopf bifurcation takes place (as is con rmed by a simple
stability analysis). The maximal canard closely follows the curve giverby the nullcline
h=0when | = Iy, thatis h=" ¢(x), where

_ o ax)
o) = g5 (65)

In the previous two sections we then magni ed the stripjhj <" . Let us omit this
(as we found it does not distinguish di erent canards from each otter), and instead
magnify around the maximal canard by introducing the variable W = (h " o(x))['],
giving the system

x = 2WETT e o(x); (66a)

W= Wit F L) SeOIW T+ o]+ " a(x) : (66b)

The nullcline bifurcates when 0 = W = @M=@x= @MY =@W the solution of which
gives

lo=ax§ (b dx3 I; (67)
where xg is a solution of
dxo) " §(x0)="; (68)

and, for completeness, we have also

_ " (xo) " =
WO 8(()(0) g((xo) O(XO) . (69)
Beyond this value of I, the canard develops a head that remains, for a short range
of parameters, on the parabolic surface = 0. We can estimate this parameter range
as follows. Let | =1y Iy, then the canards without head exist over the parameter
rangelg | <1<l 4. The canard with head can exist over a similar range the other
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side oflg, that is, 1o < | <1 ¢+ |, during which the head grows over the region
Y2 <y<yi wherey; = | +candy, = c+ 1+ 2 2 bd *. The head does not

reach full size, however, being interrupted by the Hopf point of the fast subsystem and
developing a spike. Let us say that this takes place ay = ysp, shown in gure 15.
If each spike grows linearly with | up to y,, then spike growth takes place over a
parameter rangelsy < | <1 g + % | , and is preceded by a ’lip' | the canard
brie y growing a head | over arange o <I<| g. If we assume that the growth of
the head with | is approximately linear, then

" Ysp Y1 ,.
Isp lo I I: (70)

It remains to nd the value y = vys, at which the fast subsystem undergoes a
Hopf bifurcation by solving x = y = 0 aﬁd @=@x+ @=@y= 0, giving ysp =
| +c ax3, +(b d)xg,, wherexsy= b ~ P 3a =3a

Finally, it is possible to capture the creation of the rst spike via the canard
explosion, by using an exponential microscope and looking at bifurdéons of level sets
associated with the ow. A complete description of the spike-addingphenomenon
in such bursters, the necessary exponential rescalings, and thafurcations of level
sets, is beyond the primarily expository scope of this paper; theswvill be addressed
in future work. We turn now to a more general result, a local classication of the
di erent forms of canards that are possible in systems of arbitray dimension.

5. Classi cation of canards in piecewise-smooth systems

Recently, a class of discontinuity-induced bifurcations a ecting peiodic orbits have
been classied in piecewise-smooth systems. In [16], it was stated #h these
\catastrophic sliding bifurcations" included a classication of three generically
occuring canards. We will show here how these can be derived fromingularly
perturbed systems by the method of pinching.

In a neighbourhood of one of the foldsff {x) = 0g of the critical manifold S
in (4), we can neglect terms cubic in & 1) and, after a simple change of variables,
write

"X =y %xz: (71a)
y =q X (71b)

This expresses a slow-fast system with a critical manifolds, given by y = %xz, in the
neighbourhood of a fold point at the origin. We can use pinching to deive a piecewise-
smooth approximation to this system. Leth =y %xz, so that the critical manifold is
h = 0, and choose a neighbourhoodjhj < for some > 0, to form a pinch zone. The
nullcline h.= 0, labeled S in section 3, is given byS = (x; %xz + " g 1): x2R .

We can pinch in the y-direction along bres (17) given by pyx( ) =(X; %xz + ).
This is equivalent to de ning a new coordinatey-=y  sgn() which, by substitution
into (71), satis es the piecewise-smooth system

X = &sgn(y %X2)+ O ¥x® ; (72a)

¥=q X (72b)
From (19), we can derive a sliding vector eld Fs = qx—x(l;x) on the switching
manifold y = %xz. This appears to be divergent atx = 0, but from section 3, it
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only applies on the sliding region, for which % 1 < +, hence the pointx = 0
does not lie in this region so the divergence is never encountered. €hboundaries
are the tangencies of the upper vector eld to the switching manifdd at T;, where
x = qH1+ ="), and of the lower vector eld at T,, wherex = g1 ="), where
the vector eld curves respectively towards and away from the maifold. There is a
sliding equilibrium (a point where Fs =0) at x = q.

If we plot the phase portrait in the (x;h) coordinates for varying q we arrive at
gure 16(a). Consider if the orbit marked ? (for q < 0) is the local segment of a
periodic orbit that detaches from the manifold at T;. Let g increase: the tangencies
collide when g = 0, at which point the orbit can pass from the stable to unstable
sliding regions; we call this asimple canard For g > O the orbit terminates at the
sliding equilibrium, hence the periodic orbit has vanished, but has doneso instantly
(or catastrophically).

line of

h
(a) T—)X crossing T2 (eqm“bna (b)
gl?r?ifgl»e_ """"""""" &ﬂsé—«;/olq %ﬂ? ﬁ )

- tabl
i crossing % T1 :Iiﬁtljin% | )Z T1
x x
simple canard visible canard

Figure 16. Types of canard in two dimensions, as the parameter q varies. A
small change of inset causes a jump in the outset. We classify these as: (a) simple
canard, (b) visible canard.

Notice that the tangencies T; and T, in gure 16(a) are such that the vector
elds curve locally downward, con rmed by verifying that h < 0 in the ows of (71).
More generally in a piecewise-smooth system, the sign d&f can be positive at both
tangencies, or di erent at each, so the vector eld can curve towards or away from the
manifold. When all possible scenarios are considered, it is easily veride (provided
h 6 0, see [9] or [16]) that there are two other cases in which an orbit pases from
stable sliding to unstable. One of these is uninteresting, because ¢ ows either side
of the manifold both curve towards it, keeping the ow within a neighb ourhood of
the manifold. The interesting case is shown in gure 16(b). Here, anorbit with a
tangency to the manifold is visible on both sides of the canard paramnter, hence we
call this a visible canard

The double tangency point through which the canard trajectory passes is not
generic in two dimensions, and is only seen under variation of a paranter (such asq).
In three dimensions, however, tangencies occur along curves, @generically these can
cross to form double tangencies. We now show how these are deri/&om a singular
perturbation problem.

Consider the three dimensional system:

"X =y %xz: (73a)
y = bz+ cx; (73b)
Z =g (730)

which is a local normal form for a three dimensional system with a slowariable
added to (71) [23]. As above, we can leh = y %xz, de ne a pinch zonejhj < , and
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pinch along the y-direction by de ning a coordinate ¥ = y sgn(), which satis es
a piecewise-smooth system

x= psgne X0+ 0 ¥x (742)

¥ = bz+ cx; (74b)

z=a (74c)
The sliding vector eld Fs is given ony-= %xz by

X = (bz+ cx)=x (75a)

zZ=a (75b)

This can be recognised from [23] as similar to the slow subsystem offywhen" = 0.

Notice, however, that this piecewise-smooth approximation has ben obtained for
nonzero". The sliding region is given byj(bz+ cx)=xj < =", which excludes the
line x = 0 where (75a) is singular. The boundaries of the sliding region are wére
the vector elds in (74) are tangent to the switching manifold ¥ = 0. They lie along

z=( = c¢)x=b, labeledT; and T, in gure 17. These lines cross at the origin, and
the sliding vector eld is not well de ned there.

X

@

S ON
Teom &
2

g
simple canard robust canard visible canard
(folded saddle) (folded node)

Figure 17. The 3 canards in three dimensions. A small change of inset cau ses a
jump in the outset. We classify these as: (a) simple canard, ( b) robust canard, (c)
visible canard. Their corresponding classi cation in sing ularly perturbed systems
[23] is indicated in brackets, noting that (c) seems not to ha ve appeared previously
in the singular perturbation literature. The vector eld is tangent to the upper
side of the switching manifold along Ti, and to the lower side along T». An extra
arrow in (a)-(b) shows that the vector eld curves towards th e manifold around
To.

We can infer the phase portrait of the sliding vector eld by considering the
desingularised system Xx; x z), which has at the origin: a saddle ifab > 0, a focus if
ab <ab+ %cz < 0, and a node ifab< 0 < ab + %02; the focus/node is attracting if
¢ < 0 and repelling otherwise. We need then to observe that the equilibrim of the
desingularized system Xx; x z) is not a true sliding equilibrium (that is Fg is not zero,
and not even uniquely de ned, at the origin). Note that the x-factor reverses ow
direction in the unstable sliding region in the desingularization, and tha orbits in Fg
can reach the origin in nite time. These facts are usually indicated byadding the term
\folded" to denote the origin as a \folded-node", \folded-saddle", etc. (degenerate
cases arise at the marginal parameter valueab+ %cz =0 and abc= 0, but these are
nongeneric); see [23, 27]. Thus we arrive at two generalizations oh¢ simple canard
(‘gure 16(a)) in three dimensions, shown in gure 17(a)-(b). Both cases require that

b

the Jacobian matrix ; 0 of the desingularised sliding vector eld (xx;xz) has
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two eigenvectors in the sliding region, which is satis ed ifc> + 4ab > 0 and
n p 0 2
="> c+ 2ab=c 2+4ab ; (76)

which is found by requiring that the righthand sides of (74), for the di erent signs

in (74a), both point towards or both away from the switching manifold h = 0. The
simple canard, gure 17(a), arises from the saddle-like sliding vecto eld ( ab > 0).

A robust case, gure 17(b), arises from the attractive node-like sliding vector eld
(c< 0,ab<0,c®+4ab>0), and is so-named because a whole one-parameter family
of canard orbits exist.

These were classi ed from piecewise-smooth systems theory in [18h which a
third type of canard was introduced. Notice that, in gure 17(a)- (b), one vector eld
curves towards the switching manifold (alongT;) while the other curves away from
it (along T1). This is the situation so long as @b  2="%)2 > ¢? 2="2, and hence
is always true if =" is suciently small. More generally, however, the vector elds
could both curve towards the manifold (if ¢ =" ab ?="2 < 0) or both away
from it (¢ =" ab ?="?2 > Q). Canards are possible in both cases, but only in
the latter case can they depart the switching manifold in such a way hat they can
form one-parameter families of periodic orbits { these are the only nes of interest
for canard explosions. The canard arises when the sliding vector ld is saddle-like
(ab > 0) with only one eigenvector in the sliding region ((76) is satis ed for anly one
of the signs ). This we call the visible case (gure 17(c)), and generalises the vible
canard from gure 16(b).

Figure 17 illustrates the phase portraits around the \sliding canards" that are
generic in piecewise-smooth systems. Consider the orbits marked to be local
segments of periodic orbits, and allow their inset to change as a paraeter varies
(similar to gure 16, but this time the local vector eld does not chan ge with the
parameter). Then observe that when a periodic orbit deforms sue that it passes
through a double tangency point, it rst forms a canard, and then, because its local
curvature changes discontinuously, the periodic orbit will be destoyed. These belong
to a larger class of four discontinuity-induced transitions called \caastrophic sliding
bifurcations" [16], the fourth of which we omit since it does not involve a canard.

Figure 17 thus provides a classi cation of piecewise-smooth canaedin three
dimensions. Furthermore, in [16] it is shown that these form a classication in R"
forn 3. Itis interesting to remark that the local sliding vector elds which give rise
to this classi cation appear already in Filippov's seminal text on piecewise-smooth
systems [9]. Figure 16 provides their extension to planar systems,nd in sections
4.1-4.3 we showed that piecewise-smooth systems, derived from sidast systems by
the pinching method of section 3, typically exhibit the canard types dassi ed above.

A note of caution must be given on the unfortunate terminology that has
arisen for this same singular point, in the dierent elds of singularly p erturbed
and discontinuous dynamical systems. The singularity lying at the oigin of (73),
namely a non-hyperbolic point on a slow manifold, is called &old (and in a addition
a folded-node, folded-saddle, etc. depending on the slow dynamicsee e.g. [23]. The
corresponding singularity lying at the origin of (74), namely a quadraic tangency of
a piecewise smooth ow to both sides of a switching manifold, is known s a two-fold
singularity, (this is because a quadratic tangency to only one side ofhe switching
manifold is known as afold), see e.g. [17].
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6. Concluding remarks

In this paper, we revisited the canard phenomenon in singularly perirbed dynamical
systems, showing a close geometrical link between nonstandard alysis and piecewise-
smooth methods. We rst reviewed the exponential microscope aproach of Benot et
al. [1], which allows the dynamics associated with a canard explosion todéresolved
locally. We then showed that similar results can be obtained in the franework of
piecewise-smooth dynamical systems using the concept of pinchindhe exponential
microscope renders the vector eld almost vertical close to the dtical manifold,
providing an obvious choice of pinch zone, and we analyzed the paraster values
where canards and maximal canards occur. We also applied thesecteniques to a
three-dimensional burster, the Hindmarsh-Rose system, to arlgse the transition from
basic canard cycles to canards with one spike. The same mechanisrarcbe found in
other three-dimensional bursters (such as the Morris-Lecar agptions [25]) and has
been recently studied from the standpoint of invariant manifolds, in particular, slow
manifolds of saddle-type and their (un)stable manifolds [11]. We haveshown that
pinching can be used to study the transition from canard cycles to piking periodic
attractors.

The method of pinching introduced in section 3, and applied to canard in sections
4.1-5, can be used more generally to approximate singularly perturbd systems by
piecewise-smooth vector elds. In particular, we have used it to decribe the dynamics
around non-hyperbolic (fold) points of critical manifolds, where the Fenichel theory
of normally hyperbolic invariant manifolds breaks down. This is an altemative to
blow-up methods, which focus on regaining hyperbolicity by introdudng an extended
system.

Pinching can be seen as the converse to regularization, where a p&gise-smooth
system is smoothed out at the switching manifold. It has been showmnly recently, in
[24], that the regularisation of a piecewise-smooth system is topoldgally equivalent to
a singularly perturbed system, and that sliding orbits are homeomophic to dynamics
on a slow manifold. This result assumes normal hyperbolicity of the sl manifold,
and therefore does not yet apply in the neighbourhood of non-hyprbolic points, such
as those giving rise to the canards we are interested in (the resolign of this will again
require blow-up methods). Ongoing and future work include the stuly of how well
pinching can capture the full range of canard phenomena irR®, such as mixed-mode
dynamics [22, 20], small amplitude oscillations near the fold [5], and spikadding
mechanisms [11].

Complementing this use of ow curvature to characterise canards is the
classi cation of canards derived from piecewise-smooth (or pinch#) systems in
gure 17. A canard occurs where regions of stable sliding and unstae sliding meet
at a point. The dynamics in a stable sliding region is non-unique in revers time,
while the dynamics in an unstable sliding region is non-unique in forward ime (recall
gure 5(b)). When the two come together, orbits can be channele from stable to
unstable dynamical regions, creating the enormous sensitivity to iftial conditions
responsible for the suddenness of a canard explosion.

Appendix: Proof of Lemma 5.1

Given the system in (34),
= W4 o(x)



Canards and curvature: nonsmooth approximation by pinchig 29

h i
w=wE SowiTTe ) 1 x?) " 3(x) +(g x)"

we di erentiate along an orbit,

dw .
R GRS LR G B C0) (77)
=W TR 8] (78)
where
n 2 n
= 2= @ 0 XD g g1 w2 (79)
X h h
To nd J(x), note that "  is a solution of (34) whenqg= ¢, SO
. 1
" 900 = hAX)jg= g0 = —O(Oo X))+l x% (80)
Substituting the di erence between (79) and (80) into (77), we have
aw _ .1 12 " 1
- WO p@ 0 —@ %) (81)

and straightforward manipulation of the term in square brackets gves

1 " " ®
1= = = x+ -q =
o h h 0
1 " " % 1 "
= — — X + — = 4+ _ _
~h (x @)+ 4 AL R
h "o qa
= — (X + 27
h (x ) h
W
= .3 B (82)
X 0 W i=l]
Finally, substituting this into (81) we have the result of Lemma 5.1,
dw X G .9 O
W=x—=W + " - 83
— dx 0 WESH ( )
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